login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, 1), (0, 1), (1, -1), (1, 0), (1, 1)}.
0

%I #7 Jan 01 2024 02:38:04

%S 1,1,3,8,27,89,320,1158,4347,16510,63903,249952,989110,3947056,

%T 15878333,64296723,261931840,1072616649,4413123474,18233286270,

%U 75619434417,314696837489,1313747904446,5500152407820,23087645330262,97148591427302,409700045646219,1731398744266320,7331054076146476

%N Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, 1), (0, 1), (1, -1), (1, 0), (1, 1)}.

%H M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, <a href="http://arxiv.org/abs/0810.4387">ArXiv 0810.4387</a>.

%t aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n]]; Table[Sum[aux[0, k, n], {k, 0, n}], {n, 0, 25}]

%K nonn,walk

%O 0,3

%A _Manuel Kauers_, Nov 18 2008