login
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, 1), (-1, 0), (1, -1), (1, 1)}
0

%I #4 Dec 04 2016 13:56:59

%S 1,1,4,11,42,130,506,1701,6678,23348,92162,330718,1310042,4785834,

%T 19002354,70329169,279708134,1045513784,4163154786,15682361864,

%U 62502107274,236910288210,944854095762,3599694071586,14364065086506,54956626517442,219388412771714,842388119494786,3363960168087706

%N Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, 1), (-1, 0), (1, -1), (1, 1)}

%H M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, <a href="http://arxiv.org/abs/0810.4387">ArXiv 0810.4387</a>.

%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.

%t aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[Sum[aux[i, j, n], {i, 0, n}, {j, 0, n}], {n, 0, 25}]

%K nonn,walk

%O 0,3

%A _Manuel Kauers_, Nov 18 2008