%I #2 Mar 30 2012 18:54:26
%S 1,3,13,53,251,1123,5443,25319,124085,589525,2907101,13992377,
%T 69260281,336246069,1668515057,8149453349,40508704195,198730129755,
%U 989055732315,4868337933007,24251331823247,119677240767379,596579249085239,2950013134883235,14713426845193475,72874410714058567,363620465475437771
%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, -1), (-1, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 1)}
%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, -1 + k, -1 + n] + aux[-1 + i, j, -1 + k, -1 + n] + aux[-1 + i, j, k, -1 + n] + aux[1 + i, -1 + j, -1 + k, -1 + n] + aux[1 + i, 1 + j, 1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
%K nonn,walk
%O 0,2
%A _Manuel Kauers_, Nov 18 2008