%I #4 Mar 29 2024 19:42:04
%S 1,1,3,9,33,115,441,1643,6407,24603,96779,377445,1492297,5871099,
%T 23287029,92099083,366082077,1452638305,5782634569,22995888507,
%U 91639232473,364963107847,1455530408507,5802819699999,23156241508257,92386637441455,368837264732893,1472357214006587,5880195295415315
%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 1, 1), (0, 1, 1), (1, -1, 1), (1, 1, -1)}.
%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, 1 + j, -1 + k, -1 + n] + aux[i, -1 + j, -1 + k, -1 + n] + aux[1 + i, -1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
%K nonn,walk
%O 0,3
%A _Manuel Kauers_, Nov 18 2008