login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A148850
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, -1), (-1, -1, 1), (-1, 0, 0), (1, 0, 1), (1, 1, -1)}.
1
1, 1, 3, 8, 28, 91, 339, 1191, 4673, 17489, 70829, 275583, 1140249, 4555059, 19176287, 78180708, 333655636, 1382789189, 5964790733, 25047746365, 108998800785, 462656900979, 2028379249377, 8687945066980, 38332181892050, 165464671038519, 734031617783073, 3189844310837718, 14217991701913836
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MAPLE
Steps:= [[-1, -1, -1], [-1, -1, 1], [-1, 0, 0], [1, 0, 1], [1, 1, -1]]:
f:= proc(n, p) option remember;
if n <= min(p) then return 5^n fi;
add(procname(n-1, t), t=remove(has, map(`+`, Steps, p), -1));
end proc:
map(f, [$0..40], [0, 0, 0]); # Robert Israel, May 02 2018
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n] + aux[1 + i, 1 + j, 1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A148847 A148848 A148849 * A148851 A148852 A148853
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved