The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A148648 Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 0, 0), (-1, 1, 1), (1, 0, 0), (1, 1, -1)}. 0

%I #4 Sep 05 2022 20:28:25

%S 1,1,3,6,23,62,269,850,3891,13419,62990,229483,1093201,4139300,

%T 19918865,77643783,376413282,1501052044,7317882715,29721764794,

%U 145523007631,600006212256,2947600993255,12306920472227,60619759341056,255809804792113,1262717951385575,5377423110200973,26589798486133635

%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 0, 0), (-1, 1, 1), (1, 0, 0), (1, 1, -1)}.

%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.

%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, j, k, -1 + n] + aux[1 + i, -1 + j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]

%K nonn,walk

%O 0,3

%A _Manuel Kauers_, Nov 18 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 18:23 EDT 2024. Contains 374540 sequences. (Running on oeis4.)