login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of distinct ways to place bishops (up to 2n-2) on an n X n chessboard so that no bishop is attacking another and that it is not possible to add another bishop.
8

%I #34 Mar 30 2020 08:43:11

%S 1,4,10,64,660,7744,111888,1960000,40829184,989479936,27559645440,

%T 870414361600,30942459270912,1225022400102400,53716785891102720,

%U 2589137004664520704,136573353235553058816,7838079929528363843584,487668908919708442951680,32741107405951528945844224

%N Number of distinct ways to place bishops (up to 2n-2) on an n X n chessboard so that no bishop is attacking another and that it is not possible to add another bishop.

%C Number of maximal independent vertex sets (and minimal vertex covers) in the n X n bishop graph. - _Eric W. Weisstein_, Jun 04 2017

%H Andrew Howroyd, <a href="/A146304/b146304.txt">Table of n, a(n) for n = 1..200</a>

%H Andrew Howroyd, <a href="/A146304/a146304.txt">Algorithm and explanation of PARI code</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BishopGraph.html">Bishop Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MaximalIndependentVertexSet.html">Maximal Independent Vertex Set</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MinimalVertexCover.html">Minimal Vertex Cover</a>

%F Conjectured to be a(n) = O(n^(n-1)).

%F a(n) = A290594(n) * A290613(n) for n > 1. - _Andrew Howroyd_, Aug 09 2017

%e For n=2, the a(2) = 4 solutions are to place two bishops on the same row (two solutions) or column (two solutions).

%t M[sig_List, n_, k_, d_, x_] := M[sig, n, k, d, x] = If[n == 0, Boole[k == 0], If[k > 0, k*x*M[sig, n - 1, k - 1, d, x], 0] + If[k < n && sig[[n]] > d, (sig[[n]] - d)*x*M[sig, n - 1, k, d + 1, x], 0] + If[k + sig[[n]] - d < n, M[sig, n - 1, k + sig[[n]] - d, sig[[n]], x], 0]];

%t Q[sig_List, x_] := M[sig, Length[sig], 0, 0, x];

%t Bishop[n_, white_] := Table[n - i + If[white == 1, 1 - Mod[i, 2], Mod[i, 2]], {i, 1, n - If[white == 1, Mod[n, 2], 1 - Mod[n, 2]]}]

%t a[n_] := Q[Bishop[n, 0], 1]*Q[Bishop[n, 1], 1];

%t Table[a[n], {n, 1, 20}] (* _Jean-François Alcover_, Jun 15 2017, translated from _Andrew Howroyd_'s PARI code *)

%o (PARI)

%o \\ Needs memoization - see note on algorithm for a faster version.

%o M(sig,n,k,d,x)={if(n==0,k==0, if(k>0,k*x*M(sig,n-1,k-1,d,x),0) + if(k<n&&sig[n]>d,(sig[n]-d)*x*M(sig,n-1,k,d+1,x),0) + if(k+sig[n]-d<n,M(sig,n-1,k+sig[n]-d,sig[n],x),0))}

%o Q(sig,x)=M(sig,length(sig),0,0,x);

%o Bishop(n,white)=vector(n-if(white,n%2,1-n%2),i,n-i+if(white,1-i%2,i%2));

%o a(n)=Q(Bishop(n,0),1)*Q(Bishop(n,1),1); \\ _Andrew Howroyd_, Jun 05 2017

%Y Cf. A146303, A122749, A201862, A288182, A288183, A290594, A290613.

%K nonn

%O 1,2

%A _Paolo Bonzini_, Oct 29 2008

%E a(10)-a(11) from _Andrew Howroyd_, May 21 2017

%E Terms a(12) and beyond from _Andrew Howroyd_, Jun 05 2017