login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of chi(-x) * chi(x^5) in powers of x where chi() is a Ramanujan theta function.
1

%I #14 Jul 25 2024 02:39:33

%S 1,-1,0,-1,1,0,0,-1,1,-1,1,-1,2,-1,1,-1,2,-2,1,-2,3,-3,2,-3,4,-3,2,-4,

%T 5,-4,4,-5,6,-6,5,-6,8,-7,6,-8,11,-10,8,-11,13,-11,10,-13,16,-15,14,

%U -17,20,-18,17,-20,24,-23,21,-25,31,-29,26,-32,37,-34,32

%N Expansion of chi(-x) * chi(x^5) in powers of x where chi() is a Ramanujan theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of q^(1/4) * eta(q) * eta(q^10)^2 / eta(q^2) / eta(q^5) / eta(q^20) in powers of q.

%F Euler transform of period 20 sequence [ -1, 0, -1, 0, 0, 0, -1, 0, -1, -1, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, ...].

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (640 t)) = 2^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A145703.

%F G.f.: Product_{k>0} (1 - x^(2*k - 1)) * (1 + x^(10*k - 5)).

%F a(n) = (-1)^n * A139632(n). a(2*n) = A139631(n). a(2*n + 1) = - A145703(n).

%F a(n) = -(-1)^floor(n/2) * A145704(n) = (-1)^floor((n + 1)/2) * A145705(n). - _Michael Somos_, Sep 06 2015

%e G.f. = 1 - x - x^3 + x^4 - x^7 + x^8 - x^9 + x^10 - x^11 + 2*x^12 - x^13 + ...

%e G.f. = 1/q - q^3 - q^11 + q^15 - q^27 + q^31 - q^35 + q^39 - q^43 + 2*q^47 + ...

%t a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] QPochhammer[ -x^5, x^10], {x, 0, n}]; (* _Michael Somos_, Sep 06 2015 *)

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^10 + A)^2 / eta(x^2 + A) / eta(x^5 + A) / eta(x^20 + A), n))};

%Y Cf. A139631, A139632, A145703, A145704, A145705.

%K sign

%O 0,13

%A _Michael Somos_, Oct 17 2008