%I
%S 2,2,1,1,5,3,4,9,2,1,1,7,4,1,1,4,1,1,1,1,1,1,1,12,1,20,1,1,1,1,1,1,1,
%T 1,1,5,29,19,1,1,1,1,1,1,1,4,1,1,2,1,1,1,3,1,75,2,19,4,1,7,1,1,1,1,1,
%U 1,1,1,1,1,2,1,4,1,1,1,2,1,2,1,1,1,1,23,1,82,76,1,1,3,1,1,3,3,4,2,3,3,1,2,1,1,3,1,1,1,3,1,3,1,9,1,2,1,1,1,3,2,2,1,1,1,1,1,1,1
%N a(n) = size of the nth term in S(2) (defined in Comments).
%C Let H(L,b) be the Hamming graph whose vertices are the sequences of length L over the alphabet {0,1,...,b1} with adjacency being defined by having Hamming distance 1. Let P(L,b) be the subgraph of H(L,b) induced by the set of vertices which are base b representations of primes with L digits (not allowing leading 0 digits). Let S(b) be the sequence of all components of the graphs P(L,b), L>0, sorted by the smallest prime in a component.
%Y Cf. A145667A145674, A104080, A014234.
%K nonn,base
%O 1,1
%A _W. Edwin Clark_, Mar 17 2009
%E More terms from _Max Alekseyev_, May 12 2011
