login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145413 Number of spanning trees with degrees 1 and 3 in K_6 X P_n. 0

%I

%S 90,50400,28528560,15618720960,8555317093440,4687533591644160,

%T 2568304253243013120,1407173820392030238720,770990635166535068405760,

%U 422425827340189334775152640

%N Number of spanning trees with degrees 1 and 3 in K_6 X P_n.

%D F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

%H F. Faase, <a href="http://www.iwriteiam.nl/Cpaper.zip">On the number of specific spanning subgraphs of the graphs G X P_n</a>, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.

%H F. Faase, <a href="http://www.iwriteiam.nl/counting.html">Counting Hamiltonian cycles in product graphs</a>.

%H F. Faase, <a href="http://www.iwriteiam.nl/Cresults.html">Results from the counting program</a>

%F Recurrence:

%F a(1) = 90,

%F a(2) = 50400,

%F a(3) = 28528560,

%F a(4) = 15618720960,

%F a(5) = 8555317093440,

%F a(6) = 4687533591644160,

%F a(7) = 2568304253243013120,

%F a(8) = 1407173820392030238720,

%F a(9) = 770990635166535068405760,

%F a(10) = 422425827340189334775152640,

%F a(11) = 231447142314556654419647815680,

%F a(12) = 126809906538716706435229846241280,

%F a(13) = 69479157253021351235506090834329600, and

%F a(n) = 516a(n-1) + 14600a(n-2) + 1541184a(n-3) + 19457664a(n-4) + 56414208a(n-5)

%F + 82785024a(n-6) + 219608064a(n-7) - 213166080a(n-8) + 173408256a(n-9) + 21233664a(n-10).

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Feb 03 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 5 19:23 EDT 2020. Contains 333257 sequences. (Running on oeis4.)