login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144640 Row sums from A144562. 3
3, 17, 48, 102, 185, 303, 462, 668, 927, 1245, 1628, 2082, 2613, 3227, 3930, 4728, 5627, 6633, 7752, 8990, 10353, 11847, 13478, 15252, 17175, 19253, 21492, 23898, 26477, 29235, 32178, 35312, 38643, 42177, 45920, 49878, 54057, 58463, 63102, 67980, 73103 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Row 2 of the convolution array A213833. - Clark Kimberling, Jul 04 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = n*(2*n^2 + 5*n - 1)/2. - Jon E. Schoenfield, Jun 24 2010

G.f.: x*(3+5*x-2*x^2)/(1-x)^4. - Vincenzo Librandi, Jul 06 2012

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jul 06 2012

E.g.f.: x*(6 + 11*x + 2*x^2)*exp(x)/2. - G. C. Greubel, Mar 01 2021

MAPLE

A144640:= n-> n*(2*n^2 +5*n -1)/2; seq(A144640(n), n=1..40); # G. C. Greubel, Mar 01 2021

MATHEMATICA

CoefficientList[Series[(3+5*x-2*x^2)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 06 2012 *)

PROG

(MAGMA) I:=[3, 17, 48, 102]; [n le 4 select I[n] else 4*Self(n-1) -6*Self(n-2) +4*Self(n-3) -Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jul 06 2012

(Sage) [n*(2*n^2 +5*n -1)/2 for n in (1..40)] # G. C. Greubel, Mar 01 2021

CROSSREFS

Cf. A144562, A213833.

Sequence in context: A162291 A095697 A154304 * A084069 A297514 A307862

Adjacent sequences:  A144637 A144638 A144639 * A144641 A144642 A144643

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Jan 21 2009, Jun 29 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 11:18 EDT 2021. Contains 347612 sequences. (Running on oeis4.)