%I
%S 3,6,11,9,16,23,12,21,30,39,15,26,37,48,59,18,31,44,57,70,83,21,36,51,
%T 66,81,96,111,24,41,58,75,92,109,126,143,27,46,65,84,103,122,141,160,
%U 179,30,51,72,93,114,135,156,177,198,219,33,56,79,102,125,148,171,194
%N Triangle read by rows: T(n, k) = 2nk + n + k  1.
%C Rearrangement of A153238, numbers n such that 2*n+3 is not prime (we have 2*T(n,k)+3=(2*n+1)*(2*k+1), as 2*n+3 is odd it consists of (at least) two odd factors and all such factors appear by definition).
%H Vincenzo Librandi, <a href="/A144562/b144562.txt">Rows n = 1..100, flattened</a>
%H Mutsumi Suzuki <a href="http://mathforum.org/te/exchange/hosted/suzuki/Vincent.html">Vincenzo Librandi's method for sequential primes</a> (Librandi's description in Italian).
%e Triangle begins:
%e 3;
%e 6, 11;
%e 9, 16, 23;
%e 12, 21, 30, 39;
%e 15, 26, 37, 48, 59;
%e 18, 31, 44, 57, 70, 83;
%e 21, 36, 51, 66, 81, 96, 111;
%e 24, 41, 58, 75, 92, 109, 126, 143;
%e 27, 46, 65, 84, 103, 122, 141, 160, 179;
%t t[n_, k_] := 2 n*k + n + k  1; Table[t[n, k], {n, 11}, {k, n}] // Flatten
%o (MAGMA) [2*n*k+n+k1: k in [1..n], n in [1..11]]; /* or, see example: */ [[2*n*k+n+k1: k in [1..n]]: n in [1..9]]; // Bruno Berselli, Dec 04 2011
%o (PARI) T(n,k)=2*n*k+n+k1 \\ _Charles R Greathouse IV_, Dec 28 2011
%Y Cf. A067076, A153238.
%K nonn,easy,tabl
%O 1,1
%A _Vincenzo Librandi_, Jan 06 2009
%E Edited by _Ray Chandler_, Jan 07 2009
