Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 05 2014 17:26:59
%S 1,13,638,41476,3015296,232878412,18691183682,1540840801552,
%T 129548309399618,11057865563760844,955237244106091682,
%U 83324522236732005112,7327068320498628273506,648679579345635742189498,57761885964038080406607410,5169168679056263697679753150
%N Number of paths of a generalized chess Queen from (0,0,0) to (n,n,n) in a cube, in which the Queen moves toward the goal point at each step.
%C a(n) is the number of sequences whose terms are multiples of (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0), or (1,1,1) and whose sum is (n,n,n).
%H Alois P. Heinz and Vaclav Kotesovec, <a href="/A143734/b143734.txt">Table of n, a(n) for n = 0..250</a> (first 81 terms from Alois P. Heinz)
%F q(1,1,1) = 1; q(1,1,2) = 1; q(1,2,1) = 1; q(1,1,2) = 1; q(i_,j,k) = Sum(q(x,j,k), {x,1,i-1}) + Sum(q(i,y,k), {y,1,j-1}] + Sum(q(i,j,z), {z,1,k-1}) + Sum(q(i-w,j-w,k), {w,1,Min(i,j)}) + Sum(q(i,j-w,k-w), {w,1,Min(j, k)}) + Sum(q(i-w,j,k-w), {w,1,Min(i,k)}) + Sum(q(i-w,j-w,k-w), {w,1,Min(i,j,k)}); a(n) = q(n,n,n).
%F a(n) ~ c * d^(3*n) / n, where d = 4.575760096729293131840036142861966071... is the root of the equation -8 - 11*d - 9*d^2 - 2*d^3 + d^4 = 0, and c = 0.14917103190900041974882341373298677... . - _Vaclav Kotesovec_, Aug 23 2014
%e a(1)=13 because there are 13 generalized Queen paths from (0,0,0) to (1,1,1).
%p b:= proc(x, y, z) option remember; `if`(x=0 and y=0 and z=0, 1,
%p add(b(x-i, y, z), i=1..x)+ add(b(x, y-i, z), i=1..y)+
%p add(b(x, y, z-i), i=1..z)+ add(b(x-i, y-i, z), i=1..min(x, y))+
%p add(b(x-i, y, z-i), i=1..min(x, z))+ add(b(x, y-i, z-i),
%p i=1..min(y, z))+ add(b(x-i, y-i, z-i), i=1..min(x, y, z)))
%p end:
%p a:= n-> b(n$3): seq(a(n), n=0..20); # _Alois P. Heinz_, Jul 23 2012
%t q[1, 1, 1] = 1; q[1, 1, 2] = 1; q[1, 2, 1] = 1; q[1, 1, 2] = 1; q[i_, j_, k_] := q[i, j, k] = Sum[q[x, j, k], {x, 1, i - 1}] + Sum[q[i, y, k], {y, 1, j - 1}] + Sum[q[i, j, z], {z, 1, k - 1}] + Sum[q[i - w, j - w, k], {w, 1, Min[i, j]}] + Sum[q[i, j - w, k - w], {w, 1, Min[j, k]}] + Sum[q[i - w, j, k - w], {w, 1, Min[i, k]}] + Sum[q[i - w, j - w, k - w], {w, 1, Min[i, j, k]}]; a[n_] := q[n, n, n];
%Y A132595 gives the two-dimensional version of this sequence.
%K nonn
%O 0,2
%A Martin J. Erickson (erickson(AT)truman.edu), Aug 30 2008