Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jun 28 2021 18:42:19
%S 1,1,2,2,4,4,3,12,12,8,6,24,48,32,16,10,60,120,160,80,32,20,120,360,
%T 480,480,192,64,35,280,840,1680,1680,1344,448,128,70,560,2240,4480,
%U 6720,5376,3584,1024,256,126,1260,5040,13440,20160,24192,16128,9216,2304,512
%N Triangle read by rows: T(n,k) = 2^k*binomial(n,k)*binomial(n-k, floor((n-k)/2)), 0 <= k <= n.
%C Sum of terms in row n = binomial(2n+1,n) (A001700; see the Andreescu-Feng reference).
%D T. Andreescu and Z. Feng, 102 Combinatorial Problems (from the training of the USA IMO team), Birkhauser, Boston, 2003, Advanced problem # 15, pp. 11,61-63.
%H Harvey P. Dale, <a href="/A143358/b143358.txt">Table of n, a(n) for n = 0..1000</a>
%F E.g.f.: exp(2*x*y)*(BesselI(0,2*x) + BesselI(1,2*x)). - _Vladeta Jovovic_, Dec 02 2008
%e Triangle begins:
%e 1;
%e 1, 2;
%e 2, 4, 4;
%e 3, 12, 12, 8;
%e 6, 24, 48, 32, 16;
%e 10, 60, 120, 160, 80, 32;
%e ...
%p T:=proc(n,k) options operator, arrow: 2^k*binomial(n,k)*binomial(n-k,floor((1/2)*n-(1/2)*k)) end proc: for n from 0 to 9 do seq(T(n,k),k=0..n) end do; # yields sequence in triangular form
%t Flatten[Table[2^k Binomial[n,k]Binomial[n-k,Floor[(n-k)/2]],{n,0,10},{k,0,n}]] (* _Harvey P. Dale_, Jun 28 2021 *)
%Y Cf. A001700.
%K nonn,tabl
%O 0,3
%A _Emeric Deutsch_, Aug 11 2008