login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143277
G.f.: Product_{k>0} (1 - x^(3*k))^2 / (1 - x^(3*k - 2)).
0
1, 1, 1, -1, 0, 0, -1, -2, -1, 1, -1, -2, 0, 0, -1, 0, 2, 1, -2, 0, 1, 1, 1, 2, 0, 1, 1, -1, -1, 2, 3, -1, 0, 2, -1, -1, 1, 1, -3, 0, 0, -1, 1, 2, 0, -3, -1, -2, -2, 1, 0, -1, 0, 0, -2, 0, 2, -2, -1, 0, -2, -2, 1, 1, -1, 2, 0, -2, 1, 2, -1, 0, 3, -2, -1, 2, -1, -3, 3, 2, -1, 3, 5, -1, -2, 1, 0, 0, 1, -1, 0, 2, 0, 0, 3, 1, -2, 0, 0, 0, 4, 2, -3, 1, 1
OFFSET
0,8
FORMULA
Euler transform of period 3 sequence [ 1, 0, -2, ...].
EXAMPLE
1 + q + q^2 - q^3 - q^6 - 2*q^7 - q^8 + q^9 - q^10 - 2*q^11 - q^14 + ...
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k)^([2, -1, 0][k%3 + 1]), 1 + x * O(x^n)), n))}
CROSSREFS
Sequence in context: A230453 A098876 A364891 * A292378 A320835 A276183
KEYWORD
sign
AUTHOR
Michael Somos, Aug 04 2008
STATUS
approved