%I #7 Nov 26 2020 12:13:40
%S 1,4,6,4,15,12,7,24,27,10,33,36,13,42,45,16,119,18,209,60,63,22,69,72,
%T 25,78,81,28,87,90,31,128,99,68,70,72,74,76,39,80,82,84,43,132,135,46,
%U 329,48,245,250,51,104,106,108,55,168,171,58,767,120,61,372
%N a(1)=1. a(n) = smallest positive multiple of n such that |a(n)-a(n-1)| is prime.
%C a(n+1) - a(n) = A143175(n), which is prime.
%C a(62)=372. a(63) does not exist because 3 divides k*63-372 for all positive integers k - _Owen Whitby_, Sep 25 2008
%t spm[{n_,a_}]:=Module[{k=1},While[!PrimeQ[k(n+1)-a],k++];{n+1,k(n+1)}]; NestList[spm,{1,1},61][[All,2]] (* _Harvey P. Dale_, Nov 26 2020 *)
%Y Cf. A143175.
%K nonn,fini,full
%O 1,2
%A _Leroy Quet_, Jul 28 2008
%E a(17) to a(62) from _Owen Whitby_, Sep 25 2008