Dyck path interpretation for sequences A101785, A113337 and A143017 in OEIS

David Callan
Department of Statistics
University of Wisconsin-Madison

November 14, 2021

The three title sequences have related interpretations in terms of Dyck paths. A descent in a Dyck path is a maximal sequence of contiguous downsteps. Let $F=F(x)=$ $1+x+2 x^{2}+4 x^{3}+\ldots$ denote the generating function for Dyck paths all of whose nonterminal descents have odd length. Similarly, let $G(x)=1+x+x^{2}+2 x^{3}+\ldots$ denote the generating function for Dyck paths all of whose descents have odd length and $H(x)=1+x^{2}+2 x^{3}+\ldots$ the generating function for Dyck paths all of whose nonterminal descents have odd length and whose terminal descent (if present) has even length. Clearly,

$$
\begin{equation*}
F=G+H-1 . \tag{1}
\end{equation*}
$$

By the first return decomposition for Dyck paths, a path counted by G is either empty or has the form $U P D Q$ where U is an upstep, D is a downstep, P is a Dyck path counted by H and Q is a Dyck path counted by G. Hence,

$$
\begin{equation*}
G=1+x H G . \tag{2}
\end{equation*}
$$

Similarly, a path counted by F is either empty or has the form $U P D$ with P a Dyck path counted by F or the form $U P D Q$ where P is a Dyck path counted by H and Q is a nonempty Dyck path counted by $F-1$. Hence

$$
\begin{equation*}
F=1+x F+x H(F-1) . \tag{3}
\end{equation*}
$$

Eliminating 2 of the 3 variables F, G, H from $(1,2,3)$ yields a cubic equation for the third. In particular, we find

$$
\begin{equation*}
x^{2} G^{3}-x^{2} G^{2}+(x-1) G+1=0, \tag{4}
\end{equation*}
$$

which defines A101785, and

$$
\begin{equation*}
x F^{3}+(x-2) F^{2}+(3-x) F-1=0 . \tag{5}
\end{equation*}
$$

Sequence A143017 has offset 1. Setting $F=G+1$ in (5) yields $x G^{3}+(4 x-2) G^{2}+$ $(4 x-1) G+x=0$, which defines A143017. And H is the generating function for A113337.

