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For each positive integer n we find a continued fraction expansion for the
alternating sum
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where the polynomial p,, () is the n-th row generating function of the square ar-
ray A142978. Using a theorem of Ramanujan we show that .S, lies in Q (log(2)).

The n-th row entries of A142978 are the values [p,(k)]x>1, of the polynomial

function B
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The first few polynomials are py(x) = 0, pi(z) = x, p2(x) = 2%, p3(z) =
(223 4+ x)/3 and py(x) = (z* + 222)/3.

The o.g.f. for the sequence {p,(x)} is
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Thus the polynomial p, () is, apart from a constant factor, the Meixner
polynomial of the first kind M, (z;b,¢) at b =0, ¢ = —1, also known as a
Mittag-Leffler polynomial [3].

From the g.f. it is straightforward to show that the polynomial p,(z) is a
solution of the difference equation

e(flz+1) = flx—1)) =2nf(z)
normalized so that f(1) = 1.

Thus, for n,k > 1, we have
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We will need the following values, easily found from the g.f.:

pa(l) =1, p,(2) =2n. (2)



The following result of Euler [2, Theorem II, Section 23] represents an
alternating series as a continued fraction.

Theorem. The alternating series
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has the continued fraction representation
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Fix a positive integer n. We set ar = p,(k) and apply the theorem to the
alternating series
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Using (1) and (2), we arrive at the continued fraction representation

By means of an equivalence transformation this can be put in the form
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where the partial numerators, after the first, are of the form m(m + 1) for
m >= 1.

The value of S, follows from a result of Ramanujan [1, Chapter 12, Entry

32(1)] -
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The first few cases are
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