%I #2 Mar 30 2012 18:37:11
%S 1,1,3,13,77,594,5737,67216,931584,14968423,274312910,5657512947,
%T 129866646887,3287152235160,91025011377693,2738909774003719,
%U 89027345548731677,3110096516555803509,116244489639439112395
%N Column 2 of triangle A141760.
%F G.f.: 1/(1-x) = Sum_{n>=0} a(n) * x^n/(1+x)^[(n+1)*(n+2)/2 - 1].
%F a(n) = 1 - Sum_{j=0..n-1} a(j) * (-1)^(n-j) * C((j+1)(j+2)/2 + n-j-2, n-j) for n>0, with a(0)=1.
%o (PARI) {a(n)=if(n==0,1,1 - sum(j=0,n-1,a(j)*(-1)^(n-j)*binomial((j+1)*(j+2)/2-1+n-j-1,n-j)))}
%Y Cf. A141760, A141761, A141763, A141764.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Jul 18 2008