%I #19 Nov 25 2015 22:58:41
%S 1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0,1,0,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0,1,
%T 1,0,1,0,0,1,0,0,0,0,1,1,1,0,0,1,0,1,0,1,0,0,0,1,1,0,0,1,1,1,1,0,0,1,
%U 1,0,1,1,0,0,0,1,0,0,1,1,0,1,0,1,0,0,0,0,0,0,1,1,0,1,0,1,1,1,0,0,1,0,0,1,0
%N Triangle T(n,k) read by rows. Entries are 0 and 1. Start with 1 in the top row, add a second row of 2n-1 elements (with n=2 -> 3). Moving from left to right add 0 if the number of adjacent 1's is even or add 1 if it is odd.
%C Any diagonal, read top down from right to left, is a periodic sequence of 0's and 1's. The lengths of the periods are always powers of 2. Here are the periods for the first 20 diagonals:
%C 1
%C 0
%C 10
%C 10
%C 0110
%C 0
%C 0100
%C 1000
%C 11110000
%C 1110
%C 01001110
%C 00101000
%C 01011100
%C 1000
%C 11100000
%C 11001110
%C 0111000110001110
%C 01101000
%C 0011011010011100
%C 0010001010001000
%C If we draw a large number of rows we obtain an interesting figure with several large islands of zeros.
%H Paolo P. Lava, <a href="/A141727/a141727.pdf">Picture of Triangle A141727</a>
%e .....................................1 First Row
%e ...................................1 ... Add 1 to have an even number of adjacent 1's (2)
%e .....................................1 First Row
%e ...................................1.0 ... Add 0 because there are two adjacent 1's (in the first and second rows)
%e ......................................1 First Row
%e ....................................1.0.1 ... Again add 1 to have an even number of adjacent 1's (2)
%e The second row is now complete.
%e .....................................1 First Row
%e ...................................1.0.1 Second Row
%e .................................1 ... Add 1 because there is only an 1 adjacent (second row)
%e .....................................1 First Row
%e ...................................1.0.1 Second Row
%e .................................1.0 ... Add 0 because there are two 1's adjacent (second and third row)
%e .....................................1 First Row
%e ...................................1.0.1 Second Row
%e .................................1.0.0 ... Again add 0 because there are two 1's adjacent (second row)
%e .....................................1 First Row
%e ...................................1.0.1 Second Row
%e .................................1.0.0.1 ... Add 1 because there is only an 1 adjacent (second row)
%e .....................................1 First Row
%e ...................................1.0.1 Second Row
%e .................................1.0.0.1.0 ... Add 0 because there are two 1's adjacent (second and third row)
%e The third row is now complete. Then repeat the process for the other rows.
%e The triangle begins:
%e ...........................1
%e ........................1..0..1
%e .....................1..0..0..1..0
%e ..................1..0..1..0..1..0..0
%e ...............1..0..0..1..1..0..1..1..1
%e ............1..0..1..0..0..0..0..0..1..1..0
%e .........1..0..0..1..0..0..0..0..1..1..1..0..0
%e ......1..0..1..0..1..0..0..0..1..1..0..0..1..1..1
%e ...1..0..0..1..1..0..1..1..0..0..0..1..0..0..1..1..0
%e 1..0..1..0..0..0..0..0..0..1..1..0..1..0..1..1..1..0..0
%Y Cf. A141728-A141746.
%K easy,nonn,tabf
%O 0,1
%A _Paolo P. Lava_ & _Giorgio Balzarotti_, Jul 02 2008
%E Minor edits by _N. J. A. Sloane_, Sep 10 2012