|
|
A141547
|
|
Numbers n whose abundance is 16.
|
|
7
|
|
|
550, 748, 1504, 7192, 7912, 10792, 17272, 30592, 1713592, 4526272, 8353792, 9928792, 11547352, 17999992, 89283592, 173482552, 361702144, 1081850752, 1845991216, 2146926592, 11097907192, 12985220152, 21818579968, 34357510144, 109170719992, 228354264064, 279632332792, 549746900992
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Any term x of this sequence can be combined with any term y of A125248 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016
|
|
LINKS
|
|
|
EXAMPLE
|
a(1) = 550, since sigma(550) - 2*550 = 1116 - 1100 = 16. - Timothy L. Tiffin, Sep 13 2016
|
|
MATHEMATICA
|
lst={}; Do[If[n==Plus@@Divisors[n]-n-16, AppendTo[lst, n]], {n, 10^4}]; Print[lst];
lst = {}; Do[ If[2 n + 16 == DivisorSigma[1, n], AppendTo[lst, n]], {n, 10^8}]; lst (* Robert G. Wilson v, Aug 17 2008 *)
Select[Range[1, 10^8], DivisorSigma[1, #] - 2 # == 16 &] (* Vincenzo Librandi, Sep 14 2016 *)
|
|
PROG
|
(Magma) [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq 16]; // Vincenzo Librandi, Sep 14 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|