|
|
A141288
|
|
a(0)=1. a(n) = smallest positive multiple of a(n-1) such that a(n) contains the binary representation of n at least once somewhere within its binary representation.
|
|
1
|
|
|
1, 1, 2, 6, 12, 84, 252, 252, 504, 2520, 17640, 52920, 52920, 52920, 52920, 476280, 952560, 952560, 4762800, 61916400, 185749200, 928746000, 928746000, 928746000, 928746000, 4643730000, 13931190000, 13931190000, 13931190000, 13931190000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
EXAMPLE
|
6 in binary is 110. Checking the multiples of a(5)=84: 1*84 = 84 = 1010100 in binary. 110 does not occur. 2*84 = 168 = 10101000 in binary. 110 does not occur. But 3*84 = 252 = 11111100 in binary. 110 occurs in this like so: 1111(110)0. So a(6) = 252.
|
|
MAPLE
|
contai := proc(a, n) verify(convert(n, base, 2), convert(a, base, 2), sublist) ; end: A141288 := proc(n) option remember; local k ; if n= 0 then 1; else for k from 1 do if contai(k*procname(n-1), n) then RETURN( k*procname(n-1) ) ; fi; od: fi; end: seq(A141288(n), n=0..40) ; # R. J. Mathar, Feb 19 2009
|
|
CROSSREFS
|
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|