login
Hankel transform of a transform of Jacobsthal numbers.
3

%I #5 Jun 13 2015 00:52:38

%S 1,5,-9,-9,17,13,-25,-17,33,21,-41,-25,49,29,-57,-33,65,37,-73,-41,81,

%T 45,-89,-49,97,53,-105,-57,113,61,-121,-65,129,69,-137,-73,145,77,

%U -153,-81,161,85,-169,-89,177,93,-185,-97,193,101,-201

%N Hankel transform of a transform of Jacobsthal numbers.

%C Hankel transform of A100096(n+1).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,-2,0,-1)

%F G.f.: (1+5x-7x^2+x^3)/(1+2x^2+x^4); a(n)=(4n+1)*cos(pi*n/2)+(2n+3)*sin(pi*n/2);

%Y Cf. A017077 (unsigned bisection), A016813 (unsigned bisection).

%K easy,sign

%O 0,2

%A _Paul Barry_, Jun 05 2008