%I #13 Aug 21 2023 10:31:18
%S 6,4,5,4,9,7,2,2,4,3,6,7,9,0,2,8,1,4,1,9,6,5,4,4,2,3,3,2,9,7,0,6,6,6,
%T 0,1,8,0,5,4,8,6,9,5,0,8,8,1,9,3,1,8,0,4,4,3,1,2,6,2,2,9,4,3,5,2,2,4,
%U 7,1,8,1,9,8,9,4,9,6,5,0,5,5,8,6,5,4,7,8,9,6,1,4,3,1,1,2,2,5,2,9,8,6,0,5,0
%N Decimal expansion of sqrt(15)/6.
%C Inradius of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths. Per the Weisstein link, the inradius is the area divided by the semiperimeter.
%H Daniel Starodubtsev, <a href="/A140246/b140246.txt">Table of n, a(n) for n = 0..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Inradius.html">Inradius</a>.
%H <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a>
%F sqrt(15)/6 = A010472/6 = 2*A140239/9.
%e 0.64549722436790281419654423329706660180548695088193180443126229435224718198...
%t RealDigits[Sqrt[15]/6,10,120][[1]] (* _Harvey P. Dale_, Mar 31 2013 *)
%o (PARI) sqrt(15)/6
%Y Cf. A140239, A140240, A140241, A140242, A140243, A140244, A140245, A140247, A140248, A140249, A088543, A010472.
%Y Equals sqrt(A331257(8)/A331258(8)) (squared inradii of triangles with integer sides).
%K cons,nonn
%O 0,1
%A _Rick L. Shepherd_, May 14 2008