login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A140014 Primes of the form 2x^2+2xy+683y^2. 2

%I

%S 2,683,743,827,863,947,1103,1163,1367,1523,1607,1787,2087,2423,2543,

%T 2927,3203,3347,3803,4127,4643,5387,5783,5987,6143,6203,6287,6323,

%U 6563,6827,6983,7247,7547,7883,8387,8663,8747,8807,9587,10067,10103

%N Primes of the form 2x^2+2xy+683y^2.

%C Discriminant=-5460. See A139827 for more information.

%H Vincenzo Librandi and Ray Chandler, <a href="/A140014/b140014.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%F The primes are congruent to {2, 323, 527, 683, 743, 827, 863, 947, 1103, 1163, 1367, 1523, 1607, 1787, 1943, 2087, 2423, 2507, 2543, 2867, 2927, 3047, 3203, 3287, 3347, 3707, 3803, 4103, 4127, 4223, 4607, 4643, 4727, 4883, 5063, 5363, 5387} (mod 5460).

%t QuadPrimes2[2, -2, 683, 10000] (* see A106856 *)

%o (MAGMA) [ p: p in PrimesUpTo(11000) | p mod 5460 in {2, 323, 527, 683, 743, 827, 863, 947, 1103, 1163, 1367, 1523, 1607, 1787, 1943, 2087, 2423, 2507, 2543, 2867, 2927, 3047, 3203, 3287, 3347, 3707, 3803, 4103, 4127, 4223, 4607, 4643, 4727, 4883, 5063, 5363, 5387} ]; // _Vincenzo Librandi_, Aug 05 2012

%K nonn,easy

%O 1,1

%A _T. D. Noe_, May 02 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 05:09 EST 2020. Contains 338865 sequences. (Running on oeis4.)