%I
%S 2,683,743,827,863,947,1103,1163,1367,1523,1607,1787,2087,2423,2543,
%T 2927,3203,3347,3803,4127,4643,5387,5783,5987,6143,6203,6287,6323,
%U 6563,6827,6983,7247,7547,7883,8387,8663,8747,8807,9587,10067,10103
%N Primes of the form 2x^2+2xy+683y^2.
%C Discriminant=5460. See A139827 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A140014/b140014.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {2, 323, 527, 683, 743, 827, 863, 947, 1103, 1163, 1367, 1523, 1607, 1787, 1943, 2087, 2423, 2507, 2543, 2867, 2927, 3047, 3203, 3287, 3347, 3707, 3803, 4103, 4127, 4223, 4607, 4643, 4727, 4883, 5063, 5363, 5387} (mod 5460).
%t QuadPrimes2[2, 2, 683, 10000] (* see A106856 *)
%o (MAGMA) [ p: p in PrimesUpTo(11000)  p mod 5460 in {2, 323, 527, 683, 743, 827, 863, 947, 1103, 1163, 1367, 1523, 1607, 1787, 1943, 2087, 2423, 2507, 2543, 2867, 2927, 3047, 3203, 3287, 3347, 3707, 3803, 4103, 4127, 4223, 4607, 4643, 4727, 4883, 5063, 5363, 5387} ]; // _Vincenzo Librandi_, Aug 05 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008
