%I #17 Sep 08 2022 08:45:34
%S 37,277,373,613,757,877,1093,1117,1213,1453,1597,1933,2053,2293,2437,
%T 2557,2797,3613,3637,3733,4813,4957,5077,5413,5653,6133,6637,6997,
%U 7333,7477,7933,8317,8677,9013,9157,9277,9613,10333,10357,10453,10837
%N Primes of the form 28x^2+28xy+37y^2.
%C Discriminant=-3360. See A139827 for more information.
%C Also primes of the forms 37x^2+18xy+93y^2 and 37x^2+24xy+72y^2. See A140633. - _T. D. Noe_, May 19 2008
%H Vincenzo Librandi and Ray Chandler, <a href="/A139996/b139996.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {37, 253, 277, 373, 613, 757} (mod 840).
%t QuadPrimes2[28, -28, 37, 10000] (* see A106856 *)
%o (Magma) [p: p in PrimesUpTo(12000) | p mod 840 in [37, 253, 277, 373, 613, 757]]; // _Vincenzo Librandi_, Aug 03 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008