%I #16 Sep 08 2022 08:45:34
%S 113,137,233,617,953,977,1913,2153,2297,2417,2633,2657,2753,3137,3257,
%T 3593,3833,4337,4673,4817,4937,5153,5273,5657,6113,6353,6833,6857,
%U 7193,7457,7673,7793,8297,8513,8537,9137,9377,9473,9857,10193,10313
%N Primes of the form 8x^2+105y^2.
%C Discriminant=-3360. See A139827 for more information.
%C Also primes of the form 32x^2+24xy+57y^2. See A140633. - _T. D. Noe_, May 19 2008
%H Vincenzo Librandi and Ray Chandler, <a href="/A139988/b139988.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {113, 137, 233, 473, 617, 737} (mod 840).
%t QuadPrimes2[8, 0, 105, 10000] (* see A106856 *)
%o (Magma) [p: p in PrimesUpTo(11000) | p mod 840 in [113, 137, 233, 473, 617, 737]]; // _Vincenzo Librandi_, Aug 03 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008