%I #21 Sep 08 2022 08:45:34
%S 41,89,137,281,353,401,449,593,617,761,929,977,1097,1217,1289,1409,
%T 1553,1601,1697,1721,1913,2153,2273,2633,2657,2777,2801,2897,2969,
%U 3089,3209,3257,3593,3833,3881,4049,4217,4337,4409,4457,4649,4673
%N Primes of the form 8x^2+8xy+41y^2.
%C Discriminant=-1248. See A139827 for more information.
%C Also primes of the forms 32x^2+16xy+41y^2 and 20x^2+12xy+33y^2. See A140633. - _T. D. Noe_, May 19 2008
%C In base 12, the sequence is 35, 75, E5, 1E5, 255, 295, 315, 415, 435, 535, 655, 695, 775, 855, 8E5, 995, X95, E15, E95, EE5, 1135, 12E5, 1395, 1635, 1655, 1735, 1755, 1815, 1875, 1955, 1X35, 1X75, 20E5, 2275, 22E5, 2415, 2535, 2615, 2675, 26E5, 2835, 2855. Moreover, the discriminant is 880 and all primes are {35, 75, E5, 115, 1E5, 215} mod 220. - _Walter Kehowski_, May 31 2008
%H Vincenzo Librandi and Ray Chandler, <a href="/A139924/b139924.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {41, 89, 137, 161, 281, 305} (mod 312).
%t QuadPrimes2[8, -8, 41, 10000] (* see A106856 *)
%o (Magma) [ p: p in PrimesUpTo(6000) | p mod 312 in [41, 89, 137, 161, 281, 305]]; // _Vincenzo Librandi_, Aug 01 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008