The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A139850 Primes of the form 11x^2 + 8xy + 11y^2. 3

%I

%S 11,71,179,191,239,359,431,491,599,659,911,1019,1031,1439,1451,1499,

%T 1619,1871,2039,2111,2339,2459,2531,2591,2699,2711,2879,3011,3119,

%U 3299,3371,3539,3719,3851,4019,4139,4211,4271,4391,4691,4799,5051

%N Primes of the form 11x^2 + 8xy + 11y^2.

%C Discriminant = -420. See A139827 for more information.

%C Also primes of the forms 11x^2 + 6xy + 39y^2 and 11x^2 + 10xy + 50y^2. See A140633. - _T. D. Noe_, May 19 2008

%H Vincenzo Librandi and Ray Chandler, <a href="/A139850/b139850.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%F The primes are congruent to {11, 71, 179, 191, 239, 359} (mod 420).

%t Union[QuadPrimes2[11, 8, 11, 10000], QuadPrimes2[11, -8, 11, 10000]] (* see A106856 *)

%o (MAGMA) [ p: p in PrimesUpTo(6000) | p mod 420 in {11, 71, 179, 191, 239, 359}]; // _Vincenzo Librandi_, Jul 29 2012

%o (PARI) list(lim)=my(v=List(), s=[11, 71, 179, 191, 239, 359]); forprime(p=11, lim, if(setsearch(s, p%420), listput(v, p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 10 2017

%K nonn,easy

%O 1,1

%A _T. D. Noe_, May 02 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 05:38 EDT 2020. Contains 333073 sequences. (Running on oeis4.)