%I #20 Sep 08 2022 08:45:33
%S 23,31,47,71,103,191,199,223,311,367,383,463,487,599,631,647,719,727,
%T 751,823,839,863,911,983,991,1039,1087,1103,1279,1303,1367,1423,1439,
%U 1511,1543,1567,1607,1783,1831,1871,1879,1951,2039,2143,2311,2399
%N Primes of the form 4x^2+4xy+23y^2.
%C Discriminant=-352. See A139827 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A139837/b139837.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {15, 23, 31, 47, 71} (mod 88).
%t QuadPrimes2[4, -4, 23, 10000] (* see A106856 *)
%o (Magma) [ p: p in PrimesUpTo(3000) | p mod 88 in {15, 23, 31, 47, 71}]; // _Vincenzo Librandi_, Jul 29 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008