The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A139710 A number n is included if the sum of (the largest divisor of n that is <= sqrt(n)) and (the smallest divisor of n that is >= sqrt(n)) is odd. 2
 2, 6, 10, 12, 14, 18, 20, 22, 26, 28, 30, 34, 38, 40, 42, 44, 46, 50, 52, 54, 56, 58, 62, 66, 68, 70, 72, 74, 76, 78, 82, 84, 86, 88, 90, 92, 94, 98, 102, 104, 106, 108, 110, 114, 116, 118, 122, 124, 126, 130, 132, 134, 136, 138, 142, 146, 148, 150, 152, 154, 156, 158 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All terms of this sequence are even. A139711 contains all positive integers not in this sequence and vice versa. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 FORMULA {n: A000035(A033676(n) + A033677(n)) = 1}. - R. J. Mathar, May 11 2008 EXAMPLE The divisors of 12 are 1,2,3,4,6,12. The middle 2 divisors are 3 and 4. The sum of these is 7, which is odd. So 12 is included in the sequence. MAPLE A033676 := proc(n) local d ; for d from floor(sqrt(n)) to 1 by -1 do if n mod d = 0 then RETURN(d) ; fi ; od: end: A033677 := proc(n) n/A033676(n) ; end: isA139710 := proc(n) RETURN ( ( A033676(n)+A033677(n) ) mod 2 = 1 ) ; end: for n from 1 to 300 do if isA139710(n) then printf("%d, ", n) ; fi ; od: # R. J. Mathar, May 11 2008 MATHEMATICA centralDivisors:=#[[({Floor[#], Ceiling[#]}&[(1+#)/2&[Length[#]]])]]&[Divisors[#]]&; Select[Range, OddQ[Total[#]]&[centralDivisors[#]]&](* Peter J. C. Moses, May 31 2019 *) PROG (PARI) b(n) = {local(d); d=divisors(n); d[(length(d)+1)\2] + d[length(d)\2+1]}; for(n=1, 180, if(b(n)%2==1, print1(n, ", ")) ) \\ G. C. Greubel, May 31 2019 CROSSREFS Cf. A063655, A139711. Sequence in context: A214586 A337687 A305634 * A194712 A057921 A095300 Adjacent sequences:  A139707 A139708 A139709 * A139711 A139712 A139713 KEYWORD nonn AUTHOR Leroy Quet, Apr 30 2008 EXTENSIONS More terms from R. J. Mathar, May 11 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 07:19 EDT 2022. Contains 353961 sequences. (Running on oeis4.)