login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A139710 A number n is included if the sum of (the largest divisor of n that is <= sqrt(n)) and (the smallest divisor of n that is >= sqrt(n)) is odd. 2
2, 6, 10, 12, 14, 18, 20, 22, 26, 28, 30, 34, 38, 40, 42, 44, 46, 50, 52, 54, 56, 58, 62, 66, 68, 70, 72, 74, 76, 78, 82, 84, 86, 88, 90, 92, 94, 98, 102, 104, 106, 108, 110, 114, 116, 118, 122, 124, 126, 130, 132, 134, 136, 138, 142, 146, 148, 150, 152, 154, 156, 158 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

All terms of this sequence are even.

A139711 contains all positive integers not in this sequence and vice versa.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

FORMULA

{n: A000035(A033676(n) + A033677(n)) = 1}. - R. J. Mathar, May 11 2008

EXAMPLE

The divisors of 12 are 1,2,3,4,6,12. The middle 2 divisors are 3 and 4. The sum of these is 7, which is odd. So 12 is included in the sequence.

MAPLE

A033676 := proc(n) local d ; for d from floor(sqrt(n)) to 1 by -1 do if n mod d = 0 then RETURN(d) ; fi ; od: end: A033677 := proc(n) n/A033676(n) ; end: isA139710 := proc(n) RETURN ( ( A033676(n)+A033677(n) ) mod 2 = 1 ) ; end: for n from 1 to 300 do if isA139710(n) then printf("%d, ", n) ; fi ; od: # R. J. Mathar, May 11 2008

MATHEMATICA

centralDivisors:=#[[({Floor[#], Ceiling[#]}&[(1+#)/2&[Length[#]]])]]&[Divisors[#]]&;

Select[Range[500], OddQ[Total[#]]&[centralDivisors[#]]&](* Peter J. C. Moses, May 31 2019 *)

PROG

(PARI) b(n) = {local(d); d=divisors(n); d[(length(d)+1)\2] + d[length(d)\2+1]};

for(n=1, 180, if(b(n)%2==1, print1(n, ", ")) ) \\ G. C. Greubel, May 31 2019

CROSSREFS

Cf. A063655, A139711.

Sequence in context: A139799 A214586 A305634 * A194712 A057921 A095300

Adjacent sequences:  A139707 A139708 A139709 * A139711 A139712 A139713

KEYWORD

nonn

AUTHOR

Leroy Quet, Apr 30 2008

EXTENSIONS

More terms from R. J. Mathar, May 11 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 9 18:32 EDT 2020. Contains 336326 sequences. (Running on oeis4.)