%I #16 Feb 05 2024 11:21:29
%S 1,6,122,2126,7910,8254,16201,32312,32426,32998,65436,261649,261803,
%T 1044017,1050183,4194999
%N Numbers k that divide the sum of the digits of k^k in base 2.
%C Conjecture: the sequence is infinite.
%C The quotients are 1, 1, 3, 5, 6, 6, 7, 6, 7, 7, 7, 9, 9, 10, 10, 11.
%C From _Nick Hobson_, Feb 05 2024: (Start)
%C a(17) > 4500000.
%C Observation: the known terms of this sequence are near a power of 2:
%C k log_2(k)
%C 1 0.000000
%C 6 2.584963
%C 122 6.930737
%C 2126 11.053926
%C 7910 12.949462
%C 8254 13.010878
%C 16201 13.983795
%C 32312 14.979782
%C 32426 14.984863
%C 32998 15.010091
%C 65436 15.997797
%C 261649 17.997273
%C 261803 17.998122
%C 1044017 19.993714
%C 1050183 20.002209
%C 4194999 22.000239
%C Searching near 2^23, 2^24, and 2^25 finds term 16783381.
%C (End)
%H Nick Hobson, <a href="/A138572/a138572.c.txt">C program</a>
%e 6^6 = 1011011001000000_2; 1+0+1+1+0+1+1+0+0+1+0+0+0+0+0+0 = 6; 6 mod 6 = 0.
%t Select[Range[1100000],Divisible[Total[IntegerDigits[#^#,2]],#]&] (* _Harvey P. Dale_, Dec 18 2014 *)
%o (PARI) isok(k) = !(hammingweight(k^k) % k); \\ _Michel Marcus_, Aug 20 2021
%o (C) See Links section.
%Y Cf. A108827.
%K base,hard,more,nonn
%O 1,2
%A _Robert Gerbicz_, May 12 2008
%E a(12)-a(15) from _Lars Blomberg_, Jul 01 2011
%E a(16) from _Nick Hobson_, Feb 05 2024