login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1-4x-x^3)/(1-x+x^2)^2.
2

%I #13 Sep 23 2021 14:09:15

%S 1,-2,-7,-7,2,13,13,-2,-19,-19,2,25,25,-2,-31,-31,2,37,37,-2,-43,-43,

%T 2,49,49,-2,-55,-55,2,61,61,-2,-67,-67,2,73,73,-2,-79,-79,2,85,85,-2,

%U -91,-91,2,97,97,-2,-103,-103,2,109,109,-2,-115,-115,2,121,121,-2

%N Expansion of (1-4x-x^3)/(1-x+x^2)^2.

%C Hankel transform of A079309.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,-3,2,-1).

%F a(n) = (2n+1)*cos(Pi*n/3) - (2n+5)*sin(Pi*n/3)/sqrt(3).

%F a(n) = 2*a(n-1) - 3*a(n-2) + 2*a(n-3) - a(n-4) for n > 3. - _Jinyuan Wang_, Apr 09 2020

%t CoefficientList[Series[(1-4x-x^3)/(1-x+x^2)^2,{x,0,100}],x] (* or *) LinearRecurrence[{2,-3,2,-1},{1,-2,-7,-7},100] (* _Harvey P. Dale_, Sep 23 2021 *)

%o (PARI) Vec((1-4*x-x^3)/(1-x+x^2)^2 + O(x^62)) \\ _Jinyuan Wang_, Apr 09 2020

%Y Cf. A079309, A138342.

%K sign,easy

%O 0,2

%A _Paul Barry_, Mar 15 2008

%E More terms from _Jinyuan Wang_, Apr 09 2020