The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A138024 A triangular sequence of coefficients of an expansion of a Mach wave as a traveling wave in a medium: (vt')^2 = vp*vg = c^2 - (gamma-1)/(gamma+1)*vt^2; Substituting: vt -> exp(t*x); gamma->t; c->1; p(x,t) = 1 - exp(2*x*t)*(t - 1)/(1 + t). 0

%I #11 Dec 09 2017 19:39:00

%S 1,-1,1,2,-4,2,-6,12,-12,4,24,-48,48,-32,8,-120,240,-240,160,-80,16,

%T 720,-1440,1440,-960,480,-192,32,-5040,10080,-10080,6720,-3360,1344,

%U -448,64,40320,-80640,80640,-53760,26880,-10752,3584,-1024,128,-362880,725760,-725760,483840,-241920,96768,-32256,9216

%N A triangular sequence of coefficients of an expansion of a Mach wave as a traveling wave in a medium: (vt')^2 = vp*vg = c^2 - (gamma-1)/(gamma+1)*vt^2; Substituting: vt -> exp(t*x); gamma->t; c->1; p(x,t) = 1 - exp(2*x*t)*(t - 1)/(1 + t).

%C Row sums are {1, 0, 0, -2, 0, -24, 80, -720, 5376, -49280, 490752}.

%D A. H. W. Beck, Space-Charge Waves and Slow Electromagnetic Waves, Pergamon Press, New York, 1958, page 30

%D A. M. Kuethe, J. D. Schetzer, Foundations of Aerodynamics, John Wiley and sons, Inc, New York, page 177

%F p(x,t)=1 - exp(2*x*t)*(t - 1)/(1 + t) = Sum_{n>=0} (P(x,n)*t^n/n!); out_n,m = (n!/2)*Coefficients(P(x,n)).

%e {1},

%e {-1, 1},

%e {2, -4, 2},

%e {-6, 12, -12, 4},

%e {24, -48, 48, -32, 8},

%e {-120, 240, -240, 160, -80, 16},

%e {720, -1440, 1440, -960, 480, -192, 32},

%e {-5040, 10080, -10080, 6720, -3360, 1344, -448, 64},

%e {40320, -80640, 80640, -53760, 26880, -10752, 3584, -1024, 128},

%e {-362880, 725760, -725760, 483840, -241920, 96768, -32256, 9216, -2304, 256}, {3628800, -7257600, 7257600, -4838400, 2419200, -967680, 322560, -92160, 23040, -5120, 512}

%t p[t_] = FullSimplify[1 - Exp[2*x*t]*(t - 1)/(1 + t)];

%t g = Table[ ExpandAll[(n!/2)*SeriesCoefficient[Series[p[t], {t, 0, 30}], n]], {n, 0, 10}];

%t a = Table[ CoefficientList[(n!/2)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]

%K uned,tabl,sign

%O 1,4

%A _Roger L. Bagula_, May 01 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 03:00 EDT 2024. Contains 372957 sequences. (Running on oeis4.)