login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies A(x) = sqrt( (1 + 2x*A(x)) / (1 - 2x*A(x)) ).
2

%I #12 Sep 27 2024 06:22:55

%S 1,2,6,24,110,544,2828,15232,84246,475648,2730068,15882240,93438540,

%T 554967040,3323125528,20039827456,121597985254,741871845376,

%U 4548193111428,28004975116288,173113004348580,1073893324357632

%N G.f. satisfies A(x) = sqrt( (1 + 2x*A(x)) / (1 - 2x*A(x)) ).

%H Vaclav Kotesovec, <a href="/A138020/b138020.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) ~ 2^(n - 1/2) * phi^((5*n + 3)/2) / (sqrt(Pi) * 5^(1/4) * n^(3/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Oct 04 2020

%F From _Alexander Burstein_, Nov 26 2021: (Start)

%F G.f.: A(x) = 1 + 2*x*A(x)*(1 + A(x)^2)/(1 + A(x)).

%F G.f.: A(-x*A(x)^2) = 1/A(x). (End)

%F D-finite with recurrence +n*(n+1)*(5*n-11) *a(n) +4*(-55*n^3 +231*n^2 -263*n +51)*a(n-2) -16*(n-3)*(n-4)*(5*n-1)*a(n-4)=0. - _R. J. Mathar_, Mar 25 2024

%p A138020 := proc(n)

%p option remember ;

%p if n < 5 then

%p op(n+1,[1,2,6,24,110]) ;

%p else

%p 4*(-55*n^3 +231*n^2 -263*n +51)*procname(n-2) -16*(n-3)*(n-4)*(5*n-1)*procname(n-4) ;

%p -%/n/(n+1)/(5*n-11)

%p end if;

%p end proc:

%p seq(A138020(n),n=0..30) ; # _R. J. Mathar_, Sep 27 2024

%t CoefficientList[y/.AsymptoticSolve[y^2-1-2x(y+y^3) ==0,y->1,{x,0,21}][[1]],x] - _Alexander Burstein_, Nov 26 2021

%o (PARI) a(n)=polcoeff((1/x)*serreverse(x*sqrt((1-2*x)/(1+2*x+x^2*O(x^n)))),n)

%K nonn

%O 0,2

%A _Paul D. Hanna_, Feb 28 2008