login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137663 Triangular sequence of coefficients from a polynomial recursion: p(x,n)=-2 (-(n - 1) + x)*p(x, n - 1) + (-(n + 1) + (n + 2)* x - x^2)p(x, n - 2). 0

%I

%S 1,0,-2,-3,0,3,-12,14,2,-4,-57,90,-28,-10,5,-384,666,-306,0,30,-6,

%T -3441,6342,-3419,368,213,-70,7,-38220,74202,-44886,7834,1886,-948,

%U 140,-8,-504111,1023780,-679176,155604,15918,-14652,2880,-252,9,-7683576,16226262,-11611074,3201728,55680,-243876,61670

%N Triangular sequence of coefficients from a polynomial recursion: p(x,n)=-2 (-(n - 1) + x)*p(x, n - 1) + (-(n + 1) + (n + 2)* x - x^2)p(x, n - 2).

%C Row sums are: {1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0}

%F p(x,n)=-2 (-(n - 1) + x)*p[x, n - 1] + (-(n + 1) + (n + 2)* x - x^2)p[x, n - 2]; out_n,m=Coefficients(p(x,n)

%e {1},

%e {0, -2},

%e {-3,0, 3},

%e {-12, 14, 2, -4},

%e {-57, 90, -28, -10, 5},

%e {-384, 666, -306, 0,30, -6},

%e {-3441, 6342, -3419,368, 213, -70, 7},

%e {-38220, 74202, -44886, 7834, 1886, -948, 140, -8},

%e {-504111, 1023780, -679176, 155604, 15918, -14652, 2880, -252, 9},

%e {-7683576, 16226262, -11611074, 3201728, 55680, -243876, 61670, -7224, 420, -10},

%e {-132759147, 290128956, -221191449, 69967716, -3029890, -4304544, 1374390, -201388, 16005, -660, 11}

%t Clear[p, x] p[x, 0] = 1; p[x, -1] = 0; p[x_, n_] := p[x, n] = -2 (-(n - 1) + x)*p[x, n - 1] + (-(n + 1) + (n + 2)* x - x^2)p[x, n - 2]; g = Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[ CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a]

%K tabl,sign

%O 1,3

%A _Roger L. Bagula_, Apr 27 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 29 13:26 EDT 2020. Contains 338066 sequences. (Running on oeis4.)