login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137211 Generalized or s-Catalan numbers. 0
1, 1, 1, 1, 2, 3, 1, 5, 12, 22, 1, 14, 55, 140, 285, 1, 42, 273, 969, 2530, 5481, 1, 132, 1428, 7084, 23751, 62832, 141778, 1, 429, 7752, 53820, 231880, 749398, 1997688, 4638348, 1, 1430, 43263, 420732, 2330445, 9203634, 28989675, 77652024 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
From R. J. Mathar, May 04 2008: (Start)
This is a triangular section of Stanica's array of s-Catalan numbers, with rows A000108, A001764, A002293-A002296, A007556, A062994, A059968,... read along diagonals in A062993 and A070914:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, ...
1, 1, 3, 12, 55, 273, 1428, 7752, 43263, 246675, 1430715, ...
1, 1, 4, 22, 140, 969, 7084, 53820, 420732, 3362260, 27343888, ...
1, 1, 5, 35, 285, 2530, 23751, 231880, 2330445, 23950355, 250543370, ...
1, 1, 6, 51, 506, 5481, 62832, 749398, 9203634, 115607310, 1478314266, ...
1, 1, 7, 70, 819, 10472, 141778, 1997688, 28989675, 430321633, 6503352856, ...
1, 1, 8, 92, 1240, 18278, 285384, 4638348, 77652024, 1329890705, 23190029720, ...
1, 1, 9, 117, 1785, 29799, 527085, 9706503, 184138713, 3573805950, 70625252863, ...
1, 1, 10, 145, 2470, 46060, 910252, 18730855, 397089550, 8612835715, 190223180840, ...
(End)
The Fuss-Catalan numbers are Cat(d,k)= [1/(k*(d-1)+1)]*binomial(k*d,k) and enumerate the number of (d+1)-gon partitions of a (k*(d-1)+2)-gon (cf. Whieldon and Schuetz link for this interpretation and others), so the (k+1)-th column of Stanica's array enumerates the number of (n+1)-gon partitions of a (k*(n-1)+2)-gon. Cf. A000326 (k=3), A100157 (k=4) and A234043 (k=5). - Tom Copeland, Oct 05 2014
LINKS
Heinrich Niederhausen, Catalan Traffic at the Beach, Electronic Journal of Combinatorics, Volume 9 (2002), #R33.
A. Regev, The Central Component of a Triangulation, J. Int. Seq. 16 (2013) #13.4.1
Alison Schuetz and Gwyneth Whieldon, Polygonal Dissections and Reversions of Series, arXiv:1401.7194 [math.CO], 2014.
P. Stanica, p^q-Catalan numbers and squarefree binomial coefficients, J. Numb. Theory 100 (2003) 203-216.
FORMULA
T(n,m) = binomial(m*n,n)/((m-1)*n+1).
EXAMPLE
{1},
{1, 1},
{1, 2, 3},
{1, 5, 12, 22},
{1, 14, 55, 140, 285},
{1, 42, 273, 969, 2530, 5481},
{1, 132, 1428, 7084, 23751, 62832, 141778},
{1, 429, 7752, 53820, 231880, 749398, 1997688, 4638348}
MATHEMATICA
t[n_, m_] := Binomial[m*n, n]/((m - 1)*n + 1); a = Table[Table[t[n, m], {m, 1, n + 1}], {n, 0, 10}]; Flatten[a]
CROSSREFS
Sequence in context: A185997 A231733 A182822 * A212275 A189036 A319952
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Mar 05 2008
EXTENSIONS
Edited by N. J. A. Sloane, May 16 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 14:30 EST 2023. Contains 367679 sequences. (Running on oeis4.)