login
Number of multiplex juggling sequences of length n, base state <3> and hand capacity 3.
2

%I #16 Sep 08 2022 08:45:32

%S 1,4,20,112,660,3976,24180,147648,903140,5528504,33853220,207325392,

%T 1269787060,7777149416,47633751380,291750220768,1786933908740,

%U 10944758154264,67035370422020,410583912229872,2514779283989460,15402734618128456,94339983758166580

%N Number of multiplex juggling sequences of length n, base state <3> and hand capacity 3.

%H Colin Barker, <a href="/A136783/b136783.txt">Table of n, a(n) for n = 1..1000</a>

%H Carolina Benedetti, Christopher R. H. Hanusa, Pamela E. Harris, Alejandro H. Morales, Anthony Simpson, <a href="https://arxiv.org/abs/2001.03219">Kostant's partition function and magic multiplex juggling sequences</a>, arXiv:2001.03219 [math.CO], 2020. See Table 1 p. 12.

%H S. Butler and R. Graham, <a href="http://arXiv.org/abs/0801.2597">Enumerating (multiplex) juggling sequences</a>, arXiv:0801.2597 [math.CO], 2008.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (10,-27,20).

%F G.f.: (x-6*x^2+7*x^3)/(1-10*x+27*x^2-20*x^3).

%F a(n) = 10*a(n-1)-27*a(n-2)+20*a(n-3) for n>3. - _Colin Barker_, Aug 31 2016

%e a(2)=4 since <3> -> <3> -> <3>; <3> -> <2,1> -> <3>; <3> -> <1,2> -> <3> and <3> -> <0,3> -> <3> are the four possibilities.

%t LinearRecurrence[{10,-27,20},{1,4,20},30] (* _Harvey P. Dale_, Sep 17 2020 *)

%o (PARI) Vec((x-6*x^2+7*x^3)/(1-10*x+27*x^2-20*x^3) + O(x^30)) \\ _Colin Barker_, Aug 31 2016

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 25); Coefficients(R!( (x-6*x^2+7*x^3)/(1-10*x+27*x^2-20*x^3))); // _Marius A. Burtea_, Jan 13 2020

%Y Cf. A136784.

%K nonn,easy

%O 1,2

%A _Steve Butler_, Jan 21 2008