login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A136688 Triangular sequence of q-Fibonacci polynomials for s=2: F(x,n) = x*F(x,n-1) + s*F(x,n-2). 2

%I

%S 1,0,1,2,0,1,0,4,0,1,4,0,6,0,1,0,12,0,8,0,1,8,0,24,0,10,0,1,0,32,0,40,

%T 0,12,0,1,16,0,80,0,60,0,14,0,1,0,80,0,160,0,84,0,16,0,1,32,0,240,0,

%U 280,0,112,0,18,0,1,0,192,0,560,0,448,0,144,0,20,0,1

%N Triangular sequence of q-Fibonacci polynomials for s=2: F(x,n) = x*F(x,n-1) + s*F(x,n-2).

%C Row sums are: 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, ... = A001045(n).

%C Riordan array (1/(1-2*x^2), x/(1-2*x^2)). - _Paul Barry_, Jun 18 2008

%C Diagonal sums are 1,0,3,0,9,... with g.f. 1/(1-3*x^2). - _Paul Barry_, Jun 18 2008

%H G. C. Greubel, <a href="/A136688/b136688.txt">Rows n = 1..100 of triangle, flattened</a> (terms 1..500 from Nathaniel Johnston)

%H J. Cigler, <a href="http://www.fq.math.ca/Scanned/41-1/cigler.pdf">q-Fibonacci polynomials</a>, Fibonacci Quarterly 41 (2003) 31-40.

%F F(x,n) = x*F(x,n-1) + s*F(x,n-2), where F(x,0)=0, F(x,1)=1 and s=2.

%e Triangle begins as:

%e 1;

%e 0, 1;

%e 2, 0, 1;

%e 0, 4, 0, 1;

%e 4, 0, 6, 0, 1;

%e 0, 12, 0, 8, 0, 1;

%e 8, 0, 24, 0, 10, 0, 1;

%e 0, 32, 0, 40, 0, 12, 0, 1;

%e 16, 0, 80, 0, 60, 0, 14, 0, 1;

%e 0, 80, 0, 160, 0, 84, 0, 16, 0, 1;

%e 32, 0, 240, 0, 280, 0, 112, 0, 18, 0, 1;

%e ...

%p A136688 := proc(n) option remember: if(n<=1)then return n: else return x*A136688(n-1)+2*A136688(n-2): fi: end:

%p seq(seq(coeff(A136688(n),x,m),m=0..n-1),n=1..10); # _Nathaniel Johnston_, Apr 27 2011

%t s = 2; F[x_, n_]:= F[x, n]= If[n<2, n, x*F[x, n-1] + s*F[x, n-2]]; Table[CoefficientList[F[x, n], x], {n,12}]//Flatten

%t F[n_, x_, s_, q_]:= Sum[QBinomial[n-j-1, j, q]*q^Binomial[j+1, 2]*x^(n-2*j-1) *s^j, {j, 0, Floor[(n-1)/2]}]; Table[CoefficientList[F[n,x,2,1], x], {n, 1, 10}]//Flatten (* _G. C. Greubel_, Dec 16 2019 *)

%o (Sage)

%o def f(n,x,s,q): return sum( q_binomial(n-j-1, j, q)*q^binomial(j+1,2)*x^(n-2*j-1)*s^j for j in (0..floor((n-1)/2)))

%o def A136688_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( f(n,x,2,1) ).list()

%o [A136688_list(n) for n in (1..10)] # _G. C. Greubel_, Dec 16 2019

%Y Cf. A136689, A136705.

%K nonn,easy,tabl

%O 1,4

%A _Roger L. Bagula_, Apr 06 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 14:47 EDT 2020. Contains 334684 sequences. (Running on oeis4.)