login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A136163 Integration of A053120: triangle of coefficients of integration of Chebyshev's T(n,x) polynomials (powers of x in increasing order). 0

%I

%S 1,-1,-1,-1,-3,0,2,4,0,-12,0,8,-1,15,0,-40,0,24,-4,0,60,0,-120,0,64,

%T -1,-35,0,210,0,-336,0,160,8,0,-168,0,672,0,-896,0,384,-1,63,0,-672,0,

%U 2016,0,-2304,0,896,-8,0,360,0,-2400,0,5760,0,-5760,0,2048,-1,-99,0,1650,0,-7920,0,15840,0,-14080,0,4608

%N Integration of A053120: triangle of coefficients of integration of Chebyshev's T(n,x) polynomials (powers of x in increasing order).

%C The row sums are:

%C {-2, 0, -2, 0, -2, 0, -2, 0, -2, 0, -2}

%C These polynomials are orthogonal:

%C Table[Table[Integrate[Sqrt[1/(1 - x^2)]*a0[[ n]]*a0[[m]], {x, -1, 1}], {n, 1, 11}], {m, 1, 11}]

%C Solving for the recurrence:

%C Table[{c, d} /. Solve[{a0[[n]] -c*x*a0[[n - 1]] + d*a0[[n - 2]] == 0, a0[[n + 1]] - c*x*a0[[n]] + d*a0[[n - 1]] == 0}, {c, d}], {n, 3, 8}];

%C gives:

%C Q(x,n)=2*x*Q(x,n-1)-Q(x,n-2)

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.

%D Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986, page 8 and pages 42 - 43;

%F T(x,n)=2*x*T(x,n-1)-T(x,n-2); Q(x,n)=Integrate[T(y,n-1),{y,-1,x}]

%e {1},

%e {-1, -1},

%e {},

%e {-1, -3, 0, 2},

%e {4,0, -12, 0, 8},

%e {-1, 15, 0, -40, 0, 24},

%e {-4, 0, 60, 0, -120, 0, 64},

%e {-1, -35, 0, 210, 0, -336, 0, 160},

%e {8, 0, -168, 0,672, 0, -896, 0, 384},

%e {-1, 63, 0, -672, 0, 2016, 0, -2304, 0, 896}.

%e {-8, 0, 360, 0, -2400, 0, 5760, 0, -5760, 0, 2048},

%e {-1, -99, 0, 1650, 0, -7920, 0, 15840, 0, -14080, 0, 4608}

%t P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = 2*x*P[x, n - 1] - P[x, n - 2]; a0 = Table[ExpandAll[P[x, n]] /. x -> y, {n, 0, 10}]; b0 = Table[n*(n - 2)*Integrate[a0[[n]], {y, -1, x}], {n, 1, 11}] a = Join[{{1}}, Table[CoefficientList[b0[[n]], x], {n, 1, 11}]] Table[Apply[Plus, CoefficientList[b0[[n]], x]], {n, 1, 11}] Flatten[a]

%Y Cf. A053120.

%K uned,tabf,sign

%O 1,5

%A _Roger L. Bagula_, Mar 16 2008, corrected Apr 06 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 30 03:31 EDT 2021. Contains 346347 sequences. (Running on oeis4.)