The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135575 a(n) = A135574(n+1) - 2*A135574(n). 3
0, 3, -5, 9, -16, 30, -63, 129, -257, 513, -1024, 2046, -4095, 8193, -16385, 32769, -65536, 131070, -262143, 524289, -1048577, 2097153, -4194304, 8388606, -16777215, 33554433, -67108865, 134217729, -268435456, 536870910, -1073741823, 2147483649, -4294967297, 8589934593 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
G.f.: x*(3*x^3+2*x^2+x+3)/((2*x+1)*(x^2+x+1)*(x^2-x+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
a(n) + 2*a(n-1) + a(n-2) + 2*a(n-3) + a(n-4) + 2*a(n-5) = 0. - G. C. Greubel, Oct 19 2016
MAPLE
A024495 := proc(n) option remember ; if n <=1 then 0 ; elif n = 2 then 1; elif n = 3 then 3 ; else A024495(n-1)-A024495(n-2)+2^(n-2) ; fi ; end: A135574 := proc(n) option remember ; A024495(2*floor(n/2)+1 - ( n mod 2)) ; end: A135575 := proc(n) A135574(n+1)-2*A135574(n) ; end: seq(A135575(n), n=0..80) ; # R. J. Mathar, Mar 31 2008
MATHEMATICA
LinearRecurrence[{-2, -1, -2, -1, -2}, {0, 3, -5, 9, -16}, 25] (* G. C. Greubel, Oct 19 2016 *)
PROG
(PARI) a(n)=([0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1; -2, -1, -2, -1, -2]^n*[0; 3; -5; 9; -16])[1, 1] \\ Charles R Greathouse IV, Oct 19 2016
CROSSREFS
Sequence in context: A054180 A188223 A348125 * A354910 A355611 A306973
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Feb 24 2008
EXTENSIONS
More terms from R. J. Mathar, Mar 31 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 03:50 EDT 2024. Contains 373432 sequences. (Running on oeis4.)