The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135467 Expansion of q^(-3/4) * eta(q)^2 * eta(q^2)^4 * eta(q^8)^4 / eta(q^4)^6 in powers of q. 1
 1, -2, -5, 10, 13, -22, -30, 40, 60, -78, -101, 132, 170, -210, -273, 342, 409, -514, -625, 748, 917, -1102, -1300, 1570, 1863, -2186, -2589, 3034, 3540, -4148, -4838, 5584, 6489, -7500, -8621, 9958, 11417, -13046, -14960, 17066, 19417, -22122, -25119, 28450, 32253, -36478 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 T. Ishikawa, Congruences between binomial coefficients binom(2f,f) and Fourier coefficients of certain eta-products, Hiroshima Math. J. 22 (1992), no. 3, 583-590. FORMULA Euler transform of period 8 sequence [ -2, -6, -2, 0, -2, -6, -2, -4, ...]. - Michael Somos, Mar 01 2008 EXAMPLE q^3 - 2*q^7 - 5*q^11 + 10*q^15 + 13*q^19 - 22*q^23 - 30*q^27 + ... MATHEMATICA QP = QPochhammer; s = QP[q]^2*QP[q^2]^4*(QP[q^8]^4/QP[q^4]^6) + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *) PROG (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^2 + A)^2 / eta(x^4 + A)^3 * eta(x^8 + A)^2)^2, n))} /* Michael Somos, Mar 01 2008 */ CROSSREFS Sequence in context: A190437 A190249 A188434 * A230550 A018571 A064233 Adjacent sequences: A135464 A135465 A135466 * A135468 A135469 A135470 KEYWORD sign AUTHOR N. J. A. Sloane, Feb 07 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 01:00 EST 2023. Contains 367565 sequences. (Running on oeis4.)