%I
%S 1,4,2,1,7,26,13,46,23,78,39,128,64,32,16,8,4,2,1,22,11,54,27,104,52,
%T 26,13,66,33,128,64,32,16,8,4,2,1,40,20,10,5,56,28,14,7,66,33,146,73,
%U 268,134,67,253,812,406,203,665,2052,1026,513,1599,4858,2429,7350,11090
%N a(n) = 3*a(n1)+n if a(n1) is not divisible by 2, or a(n) = a(n1)/2 otherwise
%C a(n)=a(0)*(3^(ni))/(2^i) + c where c is in the range (0..sum(i*3^(ni))). Sum(i*3^(ni)) for i=1 to n equals A001793 (coefficients of Chebyshev polynomials). Max a(n) = 3^n*(a(0)/3^i*2^i + 9/4)  ((2*n+5)/4) which for large n gives max a(n) ~ 2.25*3^n  n/2.  _Ctibor O. Zizka_, Dec 26 2007
%Y Cf. A135287.
%K nonn
%O 1,2
%A _Ctibor O. Zizka_, Dec 04 2007
