The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134805 Denominator of Sum_{i=1..n} 1/(i^2*binomial(2*i,i)). 1
 1, 2, 24, 360, 2016, 16800, 237600, 151351200, 605404800, 30875644800, 53330659200, 6453009763200, 11416863427200, 1929449919196800, 1929449919196800, 93256746094512000, 680225677395264000, 196585220767231296000, 93119315100267456000, 1243794691794272409792000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For this sum times 2/3 see A130549/A130550 with offset 1. LINKS C. Elsner, On recurrence formulas for sums involving binomial coefficients, Fib. Q., 43,1 (2005), 31-45. FORMULA Sum_{i >= 1} 1/(i^2*binomial(2*i, i)) = Pi^2/18. EXAMPLE 0, 1/2, 13/24, 197/360, 1105/2016, 9211/16800, 130277/237600, 82987349/151351200, ... MAPLE seq(denom(add(1/(k^2*binomial(2*k, k)), k = 1 .. n)), n = 0 .. 19); # Peter Bala, Mar 03 2015 MATHEMATICA Join[{1}, Denominator[Accumulate[Table[1/(n^2 Binomial[2n, n]), {n, 20}]]]] (* Harvey P. Dale, Jun 07 2021 *) PROG (PARI) a(n) = denominator(sum(i=1, n, 1/(i^2*binomial(2*i, i)))); \\ Michel Marcus, Mar 10 2016 CROSSREFS For numerators see A130549, n>=1. Sequence in context: A043699 A220317 A220340 * A119702 A126804 A344057 Adjacent sequences: A134802 A134803 A134804 * A134806 A134807 A134808 KEYWORD nonn,frac AUTHOR Wolfdieter Lang and N. J. A. Sloane, Oct 13 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 07:06 EST 2022. Contains 358493 sequences. (Running on oeis4.)