login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134805 Denominator of Sum_{i=1..n} 1/(i^2*binomial(2*i,i)). 1
1, 2, 24, 360, 2016, 16800, 237600, 151351200, 605404800, 30875644800, 53330659200, 6453009763200, 11416863427200, 1929449919196800, 1929449919196800, 93256746094512000, 680225677395264000, 196585220767231296000, 93119315100267456000, 1243794691794272409792000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

For this sum times 2/3 see A130549/A130550 with offset 1.

LINKS

Table of n, a(n) for n=0..19.

C. Elsner, On recurrence formulas for sums involving binomial coefficients, Fib. Q., 43,1 (2005), 31-45.

FORMULA

Sum_{i >= 1} 1/(i^2*binomial(2*i, i)) = Pi^2/18.

EXAMPLE

0, 1/2, 13/24, 197/360, 1105/2016, 9211/16800, 130277/237600, 82987349/151351200, ...

MAPLE

seq(denom(add(1/(k^2*binomial(2*k, k)), k = 1 .. n)), n = 0 .. 19); # Peter Bala, Mar 03 2015

MATHEMATICA

Join[{1}, Denominator[Accumulate[Table[1/(n^2 Binomial[2n, n]), {n, 20}]]]] (* Harvey P. Dale, Jun 07 2021 *)

PROG

(PARI) a(n) = denominator(sum(i=1, n, 1/(i^2*binomial(2*i, i)))); \\ Michel Marcus, Mar 10 2016

CROSSREFS

For numerators see A130549, n>=1.

Sequence in context: A043699 A220317 A220340 * A119702 A126804 A344057

Adjacent sequences: A134802 A134803 A134804 * A134806 A134807 A134808

KEYWORD

nonn,frac

AUTHOR

Wolfdieter Lang and N. J. A. Sloane, Oct 13 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 07:06 EST 2022. Contains 358493 sequences. (Running on oeis4.)