%I
%S 2,20,2650,32954340,1308244991416034040,
%T 317520251251282502765281061480522484549,
%U 51348043200265516352304296553233166994035195487912155511387668758325728717007499617
%N a(n) = numerator of Product_{j=1..n} 1/(1 + 1/A134473(j)).
%C The denominator of Product_{j=1..n} 1/(1 + 1/A134473(j)) is A134477(n). A134476(n)/A134477(n) approaches a constant (0.6037789...) as n approaches infinity.
%p Digits := 220 ; A134473 := proc(n) option remember ; local su,mu ; if n =1 then 2; else su := add(1/procname(k),k=1..n-1) ; mu := mul(1/(1+1/procname(j)),j=1..n-1) ; ceil( (1+su+sqrt((su-1)^2+4*mu))/2/(mu-su) ) ; fi; end: A134476 := proc(n) mul(1/(1+1/A134473(k)),k=1..n) ; numer(%) ; end: seq(A134476(n),n=1..9) ; # _R. J. Mathar_, Jul 20 2009
%Y Cf. A134473, A134474, A134475, A134477.
%K frac,nonn
%O 1,1
%A _Leroy Quet_, Oct 27 2007
%E More terms from _R. J. Mathar_, Jul 20 2009
|