The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134475 a(n) = denominator of Sum_{k=1..n} 1/A134473(k). 6

%I #13 Sep 26 2022 08:00:12

%S 2,5,53,9886302,32706124785400851,

%T 105840083750427500921760353826840828183,

%U 51348043200265516352304296553233166994035195487912155511387668758325728717007499617

%N a(n) = denominator of Sum_{k=1..n} 1/A134473(k).

%C The numerator of Sum_{k=1..n} 1/A134473(k) is A134474(n). A134474(n)/A134475(n) approaches a constant (0.6037789...) as n approaches infinity.

%p Digits := 220 ; A134473 := proc(n) option remember ; local su,mu ; if n =1 then 2; else su := add(1/procname(k),k=1..n-1) ; mu := mul(1/(1+1/procname(j)),j=1..n-1) ; ceil( (1+su+sqrt((su-1)^2+4*mu))/2/(mu-su) ) ; fi; end: A134475 := proc(n) add(1/A134473(k),k=1..n) ; denom(%) ; end: seq(A134475(n),n=1..9) ; # _R. J. Mathar_, Jul 20 2009

%t b[n_] := b[n] = If[n == 1, 2, With[{x = Product[1/(1 + 1/b[j]), {j, 1, n-1}], y = Sum[1/b[j], {j, 1, n-1}]}, Ceiling[(1 + y + Sqrt[(y-1)^2 + 4 x])/(2 (x-y))]]];

%t a[n_] := Sum[1/b[k], {k, 1, n}] // Denominator;

%t Table[a[n], {n, 1, 7}] (* _Jean-François Alcover_, Sep 26 2022 *)

%Y Cf. A134473, A134474, A134476, A134477.

%K frac,nonn

%O 1,1

%A _Leroy Quet_, Oct 27 2007

%E More terms from _R. J. Mathar_, Jul 20 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 14 17:14 EDT 2024. Contains 371666 sequences. (Running on oeis4.)