login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084938 * [1,2,3,...], where A084938 is taken as lower triangular matrix.
3

%I #22 Jan 18 2024 06:36:37

%S 1,2,5,14,44,158,663,3310,19759,139660,1147120,10729684,112309193,

%T 1297522650,16371057801,223716758346,3289199827236,51745234494858,

%U 867023125576027,15411557297930534,289610871340870883,5736017561257017128,119413599371241577016

%N A084938 * [1,2,3,...], where A084938 is taken as lower triangular matrix.

%H Alois P. Heinz, <a href="/A134378/b134378.txt">Table of n, a(n) for n = 0..170</a>

%F a(n) ~ 2 * (n-1)! * (1 + 3/n + 12/n^2 + 58/n^3 + 327/n^4 + 2107/n^5 + 15329/n^6 + 125041/n^7 + 1139467/n^8 + 11582187/n^9 + 131230827/n^10). - _Vaclav Kotesovec_, Mar 17 2015

%e a(4) = 44 = (0, 6, 5, 3, 1) dot (1, 2, 3, 4, 5) = (0 + 12 + 15 + 12 + 5).

%p series((1-x*hypergeom([1,1],[],x))^(-2), x=0, 50); # appears to generate the sequence - _Mark van Hoeij_, Apr 22 2013

%t CoefficientList[Series[1/(1-x*HypergeometricPFQ[{1, 1}, {}, x])^2, {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 17 2015 after _Mark van Hoeij_ *)

%t CoefficientList[Assuming[Element[x,Reals], Series[E^(2/x)/(ExpIntegralEi[1/x]-E^(1/x))^2, {x,0,25}]],x] (* _Vaclav Kotesovec_, Aug 03 2015 *)

%Y Cf. A084938, A260532.

%K nonn

%O 0,2

%A _Gary W. Adamson_, Oct 22 2007, corrected Oct 26 2007

%E More terms from _Alois P. Heinz_, Apr 27 2012