The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A131892 a(n) is the number of shapes of balanced trees with constant branching factor 6 and n nodes. The node is balanced if the size, measured in nodes, of each pair of its children differ by at most one node. 6

%I

%S 1,1,6,15,20,15,6,1,36,540,4320,19440,46656,46656,699840,4374000,

%T 14580000,27337500,27337500,11390625,91125000,303750000,540000000,

%U 540000000,288000000,64000000,288000000,540000000,540000000,303750000,91125000,11390625,27337500

%N a(n) is the number of shapes of balanced trees with constant branching factor 6 and n nodes. The node is balanced if the size, measured in nodes, of each pair of its children differ by at most one node.

%H Alois P. Heinz, <a href="/A131892/b131892.txt">Table of n, a(n) for n = 0..259</a>

%H Jeffrey Barnett, <a href="http://notatt.com/btree-shapes.pdf">Counting Balanced Tree Shapes</a>

%F a(0) = a(1) = 1; a(6n+1+m) = (6 choose m) * a(n+1)^m * a(n)^(6-m), where n >= 0 and 0 <= m <= 6.

%p a:= proc(n) option remember; local m, r; if n<2 then 1 else

%p r:= iquo(n-1, 6, 'm'); binomial(6, m) *a(r+1)^m *a(r)^(6-m) fi

%p end:

%p seq(a(n), n=0..50); # _Alois P. Heinz_, Apr 10 2013

%t a[n_, k_] := a[n, k] = Module[{m, r}, If[n < 2 || k == 1, 1, If[k == 0, 0, {r, m} = QuotientRemainder[n - 1, k]; Binomial[k, m]*a[r + 1, k]^m*a[r, k]^(k - m)]]];

%t a[n_] := a[n, 6];

%t Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Jun 04 2018, after _Alois P. Heinz_ *)

%Y Cf. A110316, A131889, A131890, A131891, A131893.

%Y Column k=6 of A221857. - _Alois P. Heinz_, Apr 17 2013

%K easy,nonn

%O 0,3

%A _Jeffrey Barnett_, Jul 24 2007

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 10 05:51 EDT 2020. Contains 335572 sequences. (Running on oeis4.)