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1 Introduction

In these notes we introduce novel multiplication operations in the algebra of
formal power series C[[x]]. A multiplication operation is obtained by deforming
the ordinary Hadamard product of power series by the action of an invertible
lower triangular matrixM : we refer to this operation as theM -Hadamard prod-
uct. The M -Hadamard products are commutative and associative C−bilinear
operators on power series. In Section 3 we consider a particular example of an
M -Hadamard product where the deforming matrix M is chosen to be Pascal's
triangle of binomial coe�cients P =

((
n
k

))
. An explicit formula is found for the

P -Hadamard product of monomial polynomials. Dukes and White [DuWh'16],
in their study of the combinatorics of web diagrams and web matrices, intro-
duced a commutative and associative C−bilinear product of power series, which
they named the black diamond product. In Section 4 we show the black dia-
mond product is the same as our P -Hadamard product. Dukes and White gave
examples of polynomial sequences of combinatorial interest, such as the Fubini
polynomials and the shifted Legendre polynomials, which have simple expres-
sions in terms of the black diamond product. We give several further examples
of this type. We conclude in Section 5 by brie�y mentioning otherM -Hadamard
products that have some combinatorial interest.

2 Deforming the Hadamard product of power series

2.1 The Hadamard product

We recall the de�nition of the Hadamard product of power series.

DEFINITION

D1: The Hadamard product A(x) ∗B(x) of the power series

A(x) =

∞∑
n=0

a(n)xn ∈ C[[x]] and B(x) =

∞∑
n=0

b(n)xn ∈ C[[x]] is de�ned to be the

power series

A(x) ∗B(x) =

∞∑
n=0

a(n)b(n)xn .

FACTS
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F1: The Hadamard product of power series is clearly commutative and
associative and distributes over addition of power series.

F2: The multiplicative identity element for the algebra C[[x]] equipped with
the Hadamard product is the power series 1 + x+ x2 + · · · = 1

1−x .

F3: The set of monomial polynomials {xn}n≥0 forms a complete set of
mutually orthogonal idempotents in the algebra of power series equipped with
the Hadamard product, that is

xi*xj = δijx
i i, j ≥ 0 and

∞∑
i=0

xi = multiplicative identity.

2.2 Deformed Hadamard products

In what follows it will be convenient for us to represent a sequence a(n)
by an in�nite column vector. There is an obvious bijective correspondence φ
between formal power series and their coe�cient sequences:

A(x) = a(0) + a(1)x+ a(2)x2 + · · ·
φ
←→


a(0)
a(1)
a(2)
...

 .

Let M be a lower triangular matrix. We let M act on the column vector of
coe�cients of a power series by matrix multiplication. We can then use the
bijection φ to pull back this action to an action of M on the corresponding
power series.

DEFINITIONS

D2: We de�ne the action of the lower triangular matrix M on the power series

A(x) =
∑
n≥0

a(n)xn by

MA(x) = φ−1

M

a(0)
a(1)
a(2)
...


 .

D3: Let M be an invertible in�nite lower triangular matrix. Let

A(x) =
∑
n≥0

a(n)xn and B(x) =
∑
n≥0

b(n)xn be formal power series. The
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M -Hadamard product of A(x) and B(x), denoted by A(x)*B(x)
M

, is the

power series de�ned by

A(x) *B(x)
M

= M−1

MA(x) * MB(x)

 . (1)

FACTS

F4: If M is the identity matrix then the M -Hadamard product is just the
ordinary Hadamard multiplication of power series. We can thus view the
M -Hadamard product as being a deformation of the ordinary Hadamard
product by the action of the matrix M .

F5: The power series Mxn is the ordinary generating function for the nth
column of the matrix M .

F6: The M -Hadamard product of power series satis�es the commutative and
associative properties and distributes over addition of power series.

F7: If A(x) =
∑
i≥0

a(i)xi and B(x) =
∑
j≥0

b(j)xj then

A(x) ∗B(x)
M

=
∑
i,j≥0

a(i)b(j)

xi *

M
xj

.
Thus knowledge of the products xi *

M
xj , i, j ≥ 0 su�ces to determine the

M -Hadamard product of two power series.

F8: It follows easily from fact F3 that the power series Ei(x) :=M−1xi, for
i = 0, 1, 2, ... form a complete set of orthogonal idempotents in the algebra of
power series C[[x]] equipped with the M -Hadamard product; that is

Ei *

M
Ej = δijEi i, j ≥ 0

and

∞∑
i=0

Ei = M−1
1

1− x
= multiplicative identity.

3



Every power series A(x) has an idempotent expansion A(x) =

∞∑
n=0

a(n)En(x),

where the coe�cents a(n) are determined by the power series expansion

MA(x) =

∞∑
n=0

a(n)xn.

F9: If A(x) =

∞∑
n=0

a(n)En(x), B(x) =

∞∑
n=0

b(n)En(x) are the expansions of the

powers series A(x) and B(x) in terms of the basis of orthogonal idempotents
En(x) then

A(x) ∗B(x)
M

=

∞∑
n=0

a(n)b(n)En(x).

It follows inductively that the k-fold product

A(x) ∗
M

A(x) *

M
· · · *

M
A(x

︸ ︷︷ ︸
k factors

) =

∞∑
n=0

a(n)kEn(x).

In the next section we study a particular example of the M -Hadamard
product.

3 An example of a deformed Hadamard product

Let P denote Pascal's triangle of binomial coe�cients
((

n
k

))
. In this section we

work in the algebra of formal power series C[[x]] with multiplication of series
given by the P -Hadamard product.

The action of Pascal's triangle P on a power series A(x) is known as the
binomial transform and takes the form

PA(x) =
1

1− x
A

(
x

1− x

)
, P−1A(x) =

1

1 + x
A

(
x

1 + x

)
. (2)

Hence from (2) and de�nition D3, the P -Hadamard product of power series
has the following description.

LetA(x), B(x)∈ C[[x]]. De�ne sequences α(n) and β(n) by

1

1− x
A

(
x

1− x

)
=

∞∑
n=0

α(n)xn,
1

1− x
B

(
x

1− x

)
=

∞∑
n=0

β(n)xn.
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Then the P -Hadamard product C(x) := A(x) ∗
P
B(x) is determined by the

equation

1

1− x
C

(
x

1− x

)
=

∞∑
n=0

α(n)β(n)xn. (3)

A result of E. Borel [Stan'02, p. 207] states that the Hadamard product of a
pair of rational power series is again a rational power series. In addition,
Stanley [Stan'80, Theorem 2.10] proves the Hadamard product of a pair of
D-�nite power series is again a D-�nite power series. It is easy to see that both
the binomial transform and its inverse (2) send rational power series to
rational power series and D-�nite power series to D-�nite power series (see
[Stan'80, Example 2.9]). Combining these observations with (3) leads to the
following result.

Proposition 1. If A(x), B(x) ∈ C[[x]] is a pair of rational power series (resp.

a pair of D-�nite power series) then the P -Hadamard product A *

P
B is again

a rational power series (resp. D-�nite power series). �

3.1 Idempotents

By Fact F5, the orthogonal idempotent power series Ei(x) = P−1xi is the
generating function of the i-th column vector of the Riordan array

P−1 =
(

1
1+x ,

x
1+x

)
. Either by this observation or a simple calculation we �nd

Ei(x) = P−1xi

=
xi

(1 + x)i+1
. (4)

Applying fact F9 in this case yields the following alternative
characterisation of the P -Hadamard product of power series. If

A(x) =

∞∑
n=0

a(n)
xn

(1 + x)n+1
, B(x) =

∞∑
n=0

b(n)
xn

(1 + x)n+1

are the expansions of power series A(x) and B(x) in terms of the basis of
idempotent power series, then the P -Hadamard product of A(x) and B(x) has
the idempotent expansion

A(x) *B(x)
P

=

∞∑
n=0

a(n)b(n)
xn

(1 + x)n+1
. (5)
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EXAMPLES

E1: The multiplicative identity element is the constant power series 1 with
the idempotent expansion

1 =
1

1 + x
+

x

(1 + x)2
+

x2

(1 + x)3
+ · · · .

E2: We also note the easily proved expansion

x =
x

(1 + x)2
+

2x2

(1 + x)3
+

3x3

(1 + x)4
+ · · ·

from which we obtain for constants r and s the expansion

r + sx =
r

1 + x
+

(r + s)x

(1 + x)2
+

(r + 2s)x2

(1 + x)3
+

(r + 3s)x3

(1 + x)4
+ · · · . (6)

E3: It follows inductively from (5) and (6) that the idempotent expansion of
the n-fold product

(r + sx) *

P
· · · *

P
(r + sx) =

rn

1 + x
+

(r + s)nx

(1 + x)2
+

(r + 2s)nx2

(1 + x)3

+
(r + 3s)nx3

(1 + x)4
+ · · · . (7)

3.2 A formula for the the P -Hadamard product of
monomial polynomials.

By fact F7, to determine the P -Hadamard product of two power series it is
su�cient to know the P -Hadamard product of monomial polynomials.

Proposition 2. The P -Hadamard product of two monomial polynomials
xmand xn is given by

xm *xn

P
=

m∑
k=0

(
n+ k

k

)(
n

m− k

)
xn+k.

Proof. The action of Pascal's triangle P and its inverse P−1 on a monomial
polynomial is given by the binomial transform and the inverse binomial
transform:

Pxj =
xj

(1− x)j+1
=
∑
i≥0

(
i

j

)
xi, P−1xj =

xj

(1 + x)j+1
=
∑
i≥0

(−1)i−j
(
i

j

)
xi.
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Therefore, by the de�nition D3 of the deformed Hadamard product we have

xm *

P
xn = P−1 (Pxm ∗ Pxn)

= P−1

∑
i≥0

(
i

m

)(
i

n

)
xi


=

∑
i≥0

(
i

m

)(
i

n

)
P−1xi

=
∑
i≥0

(
i

m

)(
i

n

)∑
N≥0

(−1)N−i
(
N

i

)
xN

=
∑
N≥0

N∑
i=0

(−1)N−i
(
N

i

)(
i

m

)(
i

n

)
xN

=
∑
N≥0

s(N)xN , (8)

where we de�ne

s(N) =

N∑
i=0

(−1)N−i
(
N

i

)(
i

m

)(
i

n

)
,

a sum dependent on the parameters m and n. Clearly, s(N) = 0 for N < n
and s(n) =

(
n
m

)
. We �nd a closed form for this sum using Maple's sumtools

package. The Maple code

�

�

�

�
with(sumtools):

sumrecursion((−1)N−i
(
N
i

)(
i
m

)(
i
n

)
, i, s(n));

returns the recurrence equation

s(N)(N − n)(N −m) = N(m+ n+ 1−N)s(N − 1).

It is easy to check that the product of binomials p(N) :=
(

N
N−n

)(
n

m+n−N
)

satis�es the same recurrence equation. Also p(N) is zero for N < n with
p(n) =

(
n
m

)
= s(n). We conclude that p(N) = s(N) for all N. Hence (8)

becomes

xm *xn

P
=

∑
N

(
N

N − n

)(
n

m+ n−N

)
xN . (9)
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The coe�cient of xN in the series on the right-hand side of (9) is zero if N lies
outside the closed interval [n,m+ n]. Therefore, if we write N = n+ k, we can
recast (9) in the form

xm *xn

P
=

m∑
k=0

(
n+ k

k

)(
n

m− k

)
xn+k

completing the proof of the proposition.�

4 The black diamond product

Web diagrams are generalisations of Feynman diagrams used in the calculation
of scattering amplitudes in non-abelian quantum �eld theory. Dukes and
White [DuWh'16], in their study of the combinatorics of web diagrams,
introduced a novel multiplication of power series, which they named the black
diamond product and denoted by the symbol �. The � operator is a
C−bilinear operator on power series. By [DuWh'16, De�nition 8 and Example

10], the black diamond product of power series A(x) =
∑
i≥0

aix
i and

B(x) =
∑
i≥0

bix
i is given by

A(x)�B(x) =
∑
k≥0

xk
∑

i1,i2≥0

ai1bi2

(((
k

i1, i2

)))F

where

(((
k

i1, i2

)))F
=
(

k
k−i1,k−i2,i1+i2−k

)
.

Applying this formula to the particular case A(x) = xm, B(x) = xn yields

xm �xn =
∑
k

(
k

k − n, k −m,n+m− k

)
xk

Only summands with k ≥ max(n,m) contribute to the sum. On replacing the
dummy variable k with n+ k we obtain

xm �xn =
∑
k

(
n+ k

k, n+ k −m,m− k

)
xn+k

=

m∑
k=0

(
n+ k

k

)(
n

m− k

)
xn+k.

Comparing this result with Proposition 2 we see that Dukes and White's black
diamond product � is the same operation as our P -Hadamard product. We
record this fact in the following result.
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Proposition 3. Let A(x) and B(x) be power series. Then

A(x) *

P
B(x) = A(x)�B(x).�

For the remainder of these notes we shall use the symbol � to denote the
P -Hadamard product.

EXAMPLES

E4: x�xn = nxn + (n+ 1)xn+1

E5: x2 �xn =
(
n
2

)
xn + 2

(
n+1
2

)
xn+1 +

(
n+2
2

)
xn+2

E6: x3 �xn =
(
n
3

)
xn + 3

(
n+1
3

)
xn+1 + 3

(
n+2
3

)
xn+2 +

(
n+3
3

)
xn+3

E7: [DuWh'16, p.10] xn �xn =
∑(

n+ k

k

)(
n

k

)
xn+k = xnPn(2x+ 1), where

Pn(2x+ 1) =

n∑
k=0

(
n

k

)(
n+ k

k

)
xk is a shifted Legendre polynomial, the nth

row polynomial of A063007. In Section 4.4 below we give several other
examples relating the shifted Legendre polynomials to black diamond products.

NOTATION

N1: We abbreviate the n-fold product A(x)� · · ·�A(x) to A(x)�n with the
convention that A(x)�0 = 1.

In the following sections we give examples of polynomials of combinatorial
interest that have simple expressions in terms of the black diamond product.

4.1 The black diamond product and Stirling numbers

EXAMPLES

E8: [DuWh'16, eqn. 4] The n-fold product

x�n =

n∑
k=0

k!

{
n
k

}
xk n = 0, 1, 2, ..., (10)
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where

{
n
k

}
denotes the Stirling numbers of the second kind. The

polynomials on the right-hand side of (10) are called the Fubini polynomials
and denoted Fn(x). They are also known as the ordered Bell polynomials or
geometric polynomials. The Fubini polynomials are the row generating
polynomials of A019538 and also A131689. (10) is easily proved by induction,
making use of the result x�xn = nxn + (n+ 1)xn+1 (Example E4) and the
recurrence equation

T (n, k) = kT (n− 1, k) + kT (n− 1, k − 1)

satis�ed by the numbers T (n, k) := k!

{
n
k

}
.

Setting r = 0, s = 1 in Example E3 yields an expansion for the Fubini
polynomial Fn(x) for n ≥ 1:

Fn(x) = x�n

=
x

(1 + x)2
+

2nx2

(1 + x)3
+

3nx3

(1 + x)4
+ · · · . (11)

This expansion is due to Tanny [Tann'75].

E9: There is a dual relation to Example E8 involving the Stirling cycle

numbers

[
n
k

]
(see A130534):

n!xn = x� (x− 1)� (x− 2)� · · · � (x− n+ 1) .

=

n∑
k=0

(−1)n−k
[
n
k

]
x�k . (12)

A simple inductive proof of this identity can be given using Example E4 and
the well-known recurrence for the Stirling cycle numbers[

n+ 1
k

]
=

[
n

k − 1

]
+ n

[
n
k

]
.

E10: A shifted version of Example E9 is

n!(1 + x)n = (x+ 1)� (x+ 2)� · · · � (x+ n)

=

n∑
k=0

[
n
k

]
x�k. (13)

These are the row polynomials of A196347.

10

https://oeis.org/A019538
https://oeis.org/A131689
https://oeis.org/A130534
https://oeis.org/A196347


E11: We also note the following shifted versions of Example E8, again easily
proved by induction:

(1 + x)�n =

n∑
k=0

k!

{
n+ 1
k + 1

}
xk. (14)

These are the row polynomials of A028246 (but with a factor of x removed).

Setting r = 1, s = 1 in Example E3 yields the expansion

(1 + x)�n =
1n

1 + x
+

2nx

(1 + x)2
+

3nx2

(1 + x)3
+

4nx3

(1 + x)4
+ · · · . (15)

Comparison with the expansion (11) yields

(1 + x)�n =
(1 + x)

x
Fn(x), n ≥ 1. (16)

Expanding the left-hand side of the above by the binomial theorem and using
(10) produces an identity satis�ed by the Fubini polynomials [MiTa'17]:

x

n∑
k=0

(
n

k

)
Fk(x) = (1 + x)Fn(x), n ≥ 1. (17)

E12: The row polynomials of A038719 are given by

(2 + x)�n =

n∑
k=0

k!

{
n+ 2
k + 2

}
2

xk, (18)

where

{
n
k

}
2

denotes the 2-Stirling number of the second kind. See array

A143494.

Setting r = 2, s = 1 in Example E3 yields the expansion

(2 + x)�n =
2n

1 + x
+

3nx

(1 + x)2
+

4nx2

(1 + x)3
+

5nx3

(1 + x)4
+ · · · . (19)

E13: The polynomials (1 + 2x)�n are the row polynomials of A145901, the
triangle of f -vectors of the simplicial complexes dual to the permutohedra of
type Bn.
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Setting r = 1, s = 2 in Example E3 yields the expansion

(1 + 2x)�n =
1n

1 + x
+

3nx

(1 + x)2
+

5nx2

(1 + x)3
+

7nx3

(1 + x)4
+ · · · . (20)

We also note the binomial expansion

(1 + 2x)�n =

n∑
k=0

(
n

k

)
2kx�k

=

n∑
k=0

(
n

k

)
2kFk(x)

expressing the row polynomials of A145901 in terms of the Fubini polynomials.

E14: The polynomials (1 + 3x)�n are the row polynomials of A284861.

Setting r = 1, s = 3 in Example E3 yields the expansion

(1 + 3x)�n =
1n

1 + x
+

4nx

(1 + x)2
+

7nx2

(1 + x)3
+

10nx3

(1 + x)4
+ · · · . (21)

The binomial expansion

(1 + 3x)�n =

n∑
k=0

(
n

k

)
3kx�k

=

n∑
k=0

(
n

k

)
3kFk(x)

expresses the row polynomials of A284861 in terms of the Fubini polynomials.

4.2 The black diamond product of a geometric series and
a power series

Proposition 4. Let A(x) ∈ C[[x]] and let α, β be a pair of complex numbers.
Then

1

1− αx
�A(βx) =

1

1− αx
A

(
(1 + α)βx

1− αx

)
. (22)

Proof.

Recall the action of the binomial transform on a power series

F (x) =
∑
n≥0

f(n)xn:

P (F (x)) =
1

1− x
F

(
x

1− x

)
=
∑
n≥0

(
n∑

k=0

(
n

k

)
f(k)

)
xn. (23)
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Let C(x) denote the power series on the right-hand side of (22):

C(x) =
1

1− αx
A

(
(1 + α)βx

1− αx

)
. (24)

By de�nition D3, the proposition is equivalent to the identity

PC(x) = P

(
1

1− αx

)
∗ P (A(βx)) . (25)

We verify this is true by comparing the coe�cients of xn on both sides of (26).

Firstly, we �nd the power series expansion of the left-hand side of (25). Let

A(x) =
∑
n≥0

a(n)xn. Then by (23)

P (C(x)) =
1

1− x
C

(
x

1− x

)
=

1

(1− (1 + α)x)
A

(
β

(1 + α)x

1− (1 + α)x

)
by (24)

=
1

1−X
A

(
βX

1−X

)
where X = (1 + α)x

=
∑
n≥0

(
n∑

k=0

(
n

k

)
a(k)βk

)
Xn by (23)

=
∑
n≥0

(
n∑

k=0

(
n

k

)
a(k)βk

)
(1 + α)nxn (26)

On the other hand we have

P

(
1

1− αx

)
=

1

1− (1 + α)x

=
∑
n≥0

(1 + α)nxn

and by (23)

P (A(βx)) =
∑
n≥0

(∑
k

(
n

k

)
a(k)βk

)
xn.

Hence the Hadamard product

P

(
1

1− αx

)
∗ P (A(βx) =

∑
n≥0

(∑
k

(
n

k

)
a(k)βk

)
(1 + α)nxn.

= P ( C(x))

by (26), thus proving (25) and completing the proof of the proposition. �
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EXAMPLES

E15: Take A(x) = 1
1−x in Proposition 4. Then (22) becomes

1

1− αx
�

1

1− βx
=

1

1− (α+ β + αβ)x
. (27)

In particular,

1

1− x
�

1

1− xy
2

= 1 + (1 + y)x+ (1 + y)2x2 + (1 + y)3x3 + · · · (28)

is the ordinary generating function for Pascal's triangle expressed as the black
diamond product of two geometric series.

E16:We can generate further identities by di�erentiating (27) with respect to
either α or β: for example, if we di�erentiate (27) with respect to α and then
with respect to β we obtain

x

(1− αx)2
�

x

(1− βx)2
=

x(1 + x(α+ β + αβ + 2))

(1− (α+ β + αβ)x)3
. (29)

Setting α = β = −1 in (29) con�rms that E2(x) = x/(1 + x)2 is an idempotent
in the the black diamond algebra.

Setting α = β = −2 in (29) gives

x

(1 + 2x)2
�

x

(1 + 2x)2
= x(1 + 2x).

Here we have an example of the black diamond product of a pair of rational
functions resulting in a polynomial. For a generalisation of this identity see
exercise Ex2 below.

4.3 The black diamond product and Laguerre
polynomials

The ordinary generating function for the Laguerre polynomials Ln(y) takes
the form ∑

n≥0

Ln(y)x
n =

1

1− x
exp

(
−xy
1− x

)
.
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Applying Proposition 4 with A(x) = exp(x), α = 1 and β = −y
2 we obtain the

generating function of the Laguerre polynomials in terms of the black diamond
product:

1

1− x
� e

−xy
2 =

∑
n≥0

Ln(y)x
n, (30)

which should be compared with (2).

More generally, if we take A(x) = exp(x), α = 1 and β = −y in Proposition 4
we �nd

1

1− x
� e−xy =

1

1− x
exp

(
−2xy
1− x

)
. (31)

If we di�erentiate (31) k times with respect to y and then replace y with y/2
we obtain a generating function for the associated Laguerre polynomials

L
(k)
n (y) [ref] in terms of the black diamond product:

xk

1− x
� e−

xy
2 = 2kxk

1

(1− x)k+1
exp

(
−xy
1− x

)
= 2kxk

∑
n≥0

L(k)
n (y)xn. (32)

4.4 The black diamond product and Legendre
polynomials

We have already seen in Example E7 the identity

xn �xn =
∑(

n+ k

k

)(
n

k

)
xn+k = xnPn(2x+ 1)

expressing the shifted Legendre polynomials Pn(2x + 1) in terms of a black
diamond product. The following exercises give further relations of this type.
The proofs require the use of a computer algebra system to �nd recurrences for
the various binomial sums that arise.

EXERCISES

Ex1: Show

1

(1 + x)n+1
�

1

(1 + x)n+1
=

Pn(2x+ 1)

(1 + x)n+1
n = 0, 1, 2, ...

Ex2: Show

xn

(1 + 2x)n+1
�

xn

(1 + 2x)n+1
= xnPn(2x+ 1) n = 0, 1, 2, ...

Ex3: Show
n∑

k=0

(
n

k

)
xk � (1 + x)n−k = Pn(2x+ 1), n = 0, 1, 2, ...
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4.5 Miscellaneous identities

EXERCISES

Ex4: Show

1− x
1 + x

�
1− x
1 + x

= 1

Ex5: Show (
1− 2x

1 + 2x

)�n
=

1 + (1 + (−3)n)x
1 + 2x

Ex6: For m ≥ 0 and n∈ Z, show

xm � (1 + x)n =

(
m+ n

m

)
xm(1 + x)n

The following identity is conjectural.

Ex7: Let a ∈ C. Show

n∑
k=0

(−1)k
(
n

k

)
(x+ a)k � (x+ a)n−k

?
=

{
(−1)m

(
2m
m

)
xm(1 + x)m n = 2m even

0 n odd

5 Other M-Hadamard products

Finally, we brie�y consider two other M -Hadamard products related to the
black diamond product.

1) M =
(
n
k

)
q
:

One possibility is to investigate the M -Hadamard product where the

deformation matrix M =
((

n
k

)
q

)
is the matrix of q-binomial coe�cients.

Denote the resulting multiplication operator on power series by �q. We can
view this operator as a q-analogue of the black diamond product and
investigate q-analogues of the results of Section 4. As an example, the
q-analogue of (10) appears to be

x�q...�q x︸ ︷︷ ︸
nfactors

=

n∑
k=0

q(
k
2)[k]q!

{
n
k

}
q

xk n = 0, 1, 2, ...,

where [k]q! is the q-factorial and

{
n
k

}
q

is a q-Stirling number of the second

kind.
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2) M =
((

n
k

)
k!
)
:

In [Ba1a'18] we introduced a multiplication of power series called the white
diamond product denoted by the symbol ♦. The white diamond product is an
M -Hadamard product where the deformation matrix M is taken to be the
matrix

((
n
k

)
k!
)
. The set of integer polynomials Z[x] is closed under the white

diamond product. Many well-known sequences of polynomials, including the
Bell polynomials, the Lah polynomials, the Laguerre poynomials and the
Bessel polynomials, are shown to have simple expressions in terms of the white
diamond product. For example, the n-fold product x♦ · · · ♦x equals the nth
Bell polynomial Bn(x). The idempotents in the white diamond algebra are the

series e−x xi

i! . The idempotent expansion of the Bell polynomials in the white
diamond algebra turns out to be the well-known Dobinski formula

Bn(x) = e−x
∑
k

kn
xk

k!
.
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