Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Nov 22 2021 15:16:47
%S 1,2,5,10,21,44,93,196,411,856,1771,3642,7451,15178,30809,62358,
%T 125921,253800,510777,1026704,2061751,4137012,8295895,16627190,
%U 33311671,66716054,133582133,267407026,535206861,1071049316,2143127061,4287918172,8578528851,17161414288
%N Row sums of triangle A131402.
%H Andrew Howroyd, <a href="/A131403/b131403.txt">Table of n, a(n) for n = 0..500</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5, -8, 3, 3, -2)
%F From _Andrew Howroyd_, Aug 09 2018: (Start)
%F a(n) = 5*a(n-1) - 8*a(n-2) + 3*a(n-3) + 3*a(n-4) - 2*a(n-5).
%F G.f.: (1 - 3*x + 3*x^2 - 2*x^3 + 2*x^4)/((1 - x)^2*(1 - 2*x)*(1 - x - x^2)).
%F (End)
%e a(4) = 21 = sum of row 4 terms of A131402: (1 + 6 + 7 + 6 + 1).
%t LinearRecurrence[{5,-8,3,3,-2},{1,2,5,10,21},40] (* _Harvey P. Dale_, Nov 22 2021 *)
%o (PARI) Vec((1 - 3*x + 3*x^2 - 2*x^3 + 2*x^4)/((1 - x)^2*(1 - 2*x)*(1 - x - x^2)) + O(x^40)) \\ _Andrew Howroyd_, Aug 09 2018
%Y Cf. A131402.
%K nonn
%O 0,2
%A _Gary W. Adamson_, Jul 07 2007
%E Terms a(10) and beyond from _Andrew Howroyd_, Aug 09 2018